ijms-logo

Journal Browser

Journal Browser

Special Issue "Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (10 January 2020).

Special Issue Editor

Prof. Dr. Chih-Hsin Tang
E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

This Special Issue is a continuation of our previous Special Issue "Research of Pathogenesis and Novel Therapeutics in Arthritis" (https://www.mdpi.com/journal/ijms/special_issues/arthritis).

Arthritis has a high prevalence globally and includes over 100 types, the most common of which are rheumatoid arthritis, osteoarthritis, psoriatic arthritis, and inflammatory arthritis. All types of arthritis share common features of disease, including monocyte infiltration, inflammation, synovial swelling, pannus formation, stiffness in the joints and articular cartilage destruction. The exact etiology of arthritis remains unclear, and no cure exists as of yet. Anti-inflammatory drugs (NSAIDs and corticosteroids) are commonly used in the treatment of arthritis. However, these drugs are associated with significant side effects, such as gastric bleeding and an increased risk for heart attack and other cardiovascular problems. It is therefore crucial that we continue to research the pathogenesis of arthritis and seek to discover novel modes of therapy. We invite researchers to submit original research and review articles covering significant developments in the pathogenesis of arthritis, as well as novel medicines or strategies that hold promise in the prevention and/or treatment of this disease. In particular, we welcome research covering novel signaling pathways, signaling molecules, inflammatory cytokines, or anti-inflammatory drugs.

Prof. Chih-Hsin Tang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Arthritis
  • Treatment
  • Molecular mechanisms
  • Inflammatory cytokines
  • Prevention

Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Global Gene Expression Analysis Identifies Age-Related Differences in Knee Joint Transcriptome during the Development of Post-Traumatic Osteoarthritis in Mice
Int. J. Mol. Sci. 2020, 21(1), 364; https://doi.org/10.3390/ijms21010364 - 06 Jan 2020
Abstract
Aging and injury are two major risk factors for osteoarthritis (OA). Yet, very little is known about how aging and injury interact and contribute to OA pathogenesis. In the present study, we examined age- and injury-related molecular changes in mouse knee joints that [...] Read more.
Aging and injury are two major risk factors for osteoarthritis (OA). Yet, very little is known about how aging and injury interact and contribute to OA pathogenesis. In the present study, we examined age- and injury-related molecular changes in mouse knee joints that could contribute to OA. Using RNA-seq, first we profiled the knee joint transcriptome of 10-week-old, 62-week-old, and 95-week-old mice and found that the expression of several inflammatory-response related genes increased as a result of aging, whereas the expression of several genes involved in cartilage metabolism decreased with age. To determine how aging impacts post-traumatic arthritis (PTOA) development, the right knee joints of 10-week-old and 62-week-old mice were injured using a non-invasive tibial compression injury model and injury-induced structural and molecular changes were assessed. At six-week post-injury, 62-week-old mice displayed significantly more cartilage degeneration and osteophyte formation compared with young mice. Although both age groups elicited similar transcriptional responses to injury, 62-week-old mice had higher activation of inflammatory cytokines than 10-week-old mice, whereas cartilage/bone metabolism genes had higher expression in 10-week-old mice, suggesting that the differential expression of these genes might contribute to the differences in PTOA severity observed between these age groups. Full article
(This article belongs to the Special Issue Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0)
Show Figures

Figure 1

Open AccessArticle
The Systemic Immune Response to Collagen-Induced Arthritis and the Impact of Bone Injury in Inflammatory Conditions
Int. J. Mol. Sci. 2019, 20(21), 5436; https://doi.org/10.3390/ijms20215436 - 31 Oct 2019
Abstract
Rheumatoid arthritis (RA) is a systemic disease that affects the osteoarticular system, associated with bone fragility and increased risk of fractures. Herein, we aimed to characterize the systemic impact of the rat collagen-induced arthritis (CIA) model and explore its combination with femoral bone [...] Read more.
Rheumatoid arthritis (RA) is a systemic disease that affects the osteoarticular system, associated with bone fragility and increased risk of fractures. Herein, we aimed to characterize the systemic impact of the rat collagen-induced arthritis (CIA) model and explore its combination with femoral bone defect (FD). The impact of CIA on endogenous mesenchymal stem/stromal cells (MSC) was also investigated. CIA induction led to enlarged, more proliferative, spleen and draining lymph nodes, with altered proportion of lymphoid populations. Upon FD, CIA animals increased the systemic myeloid cell proportions, and their expression of co-stimulatory molecules CD40 and CD86. Screening plasma cytokine/chemokine levels showed increased tumor necrosis factor-α (TNF-α), Interleukin (IL)-17, IL-4, IL-5, and IL-12 in CIA, and IL-2 and IL-6 increased in CIA and CIA+FD, while Fractalkine and Leptin were decreased in both groups. CIA-derived MSC showed lower metabolic activity and proliferation, and significantly increased osteogenic and chondrogenic differentiation markers. Exposure of control-MSC to TNF-α partially mimicked the CIA-MSC phenotype in vitro. In conclusion, inflammatory conditions of CIA led to alterations in systemic immune cell proportions, circulating mediators, and in endogenous MSC. CIA animals respond to FD, and the combined model can be used to study the mechanisms of bone repair in inflammatory conditions. Full article
(This article belongs to the Special Issue Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0)
Show Figures

Figure 1

Open AccessArticle
Treadmill Running in Established Phase Arthritis Inhibits Joint Destruction in Rat Rheumatoid Arthritis Models
Int. J. Mol. Sci. 2019, 20(20), 5100; https://doi.org/10.3390/ijms20205100 - 15 Oct 2019
Abstract
Exercise therapy inhibits joint destruction by suppressing pro-inflammatory cytokines. The efficacy of pharmacotherapy for rheumatoid arthritis differs depending on the phase of the disease, but that of exercise therapy for each phase is unknown. We assessed the differences in the efficacy of treadmill [...] Read more.
Exercise therapy inhibits joint destruction by suppressing pro-inflammatory cytokines. The efficacy of pharmacotherapy for rheumatoid arthritis differs depending on the phase of the disease, but that of exercise therapy for each phase is unknown. We assessed the differences in the efficacy of treadmill running on rheumatoid arthritis at various phases, using rat rheumatoid arthritis models. Rats with collagen-induced arthritis were used as rheumatoid arthritis models, and the phase after immunization was divided as pre-arthritis and established phases. Histologically, the groups with forced treadmill running in the established phase had significantly inhibited joint destruction compared with the other groups. The group with forced treadmill running in only the established phase had significantly better bone morphometry and reduced expression of connexin 43 and tumor necrosis factor α in the synovial membranes compared with the no treadmill group. Furthermore, few cells were positive for cathepsin K immunostaining in the groups with forced treadmill running in the established phase. Our results suggest that the efficacy of exercise therapy may differ depending on rheumatoid arthritis disease activity. Active exercise during phases of decreased disease activity may effectively inhibit arthritis and joint destruction. Full article
(This article belongs to the Special Issue Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Understanding the Molecular Mechanisms Underlying the Pathogenesis of Arthritis Pain Using Animal Models
Int. J. Mol. Sci. 2020, 21(2), 533; https://doi.org/10.3390/ijms21020533 - 14 Jan 2020
Abstract
Arthritis, including osteoarthritis (OA) and rheumatoid arthritis (RA), is the leading cause of years lived with disability (YLD) worldwide. Although pain is the cardinal symptom of arthritis, which is directly related to function and quality of life, the elucidation of the mechanism underlying [...] Read more.
Arthritis, including osteoarthritis (OA) and rheumatoid arthritis (RA), is the leading cause of years lived with disability (YLD) worldwide. Although pain is the cardinal symptom of arthritis, which is directly related to function and quality of life, the elucidation of the mechanism underlying the pathogenesis of pain in arthritis has lagged behind other areas, such as inflammation control and regulation of autoimmunity. The lack of therapeutics for optimal pain management is partially responsible for the current epidemic of opioid and narcotic abuse. Recent advances in animal experimentation and molecular biology have led to significant progress in our understanding of arthritis pain. Despite the inherent problems in the extrapolation of data gained from animal pain studies to arthritis in human patients, the critical assessment of molecular mediators and translational studies would help to define the relevance of novel therapeutic targets for the treatment of arthritis pain. This review discusses biological and molecular mechanisms underlying the pathogenesis of arthritis pain determined in animal models of OA and RA, along with the methodologies used. Full article
(This article belongs to the Special Issue Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0)
Open AccessReview
Wnt Signaling and Biological Therapy in Rheumatoid Arthritis and Spondyloarthritis
Int. J. Mol. Sci. 2019, 20(22), 5552; https://doi.org/10.3390/ijms20225552 - 07 Nov 2019
Abstract
The Wnt signaling pathway plays a key role in several biological processes, such as cellular proliferation and tissue regeneration, and its dysregulation is involved in the pathogenesis of many autoimmune diseases. Several evidences support its role especially in bone complications of rheumatic diseases. [...] Read more.
The Wnt signaling pathway plays a key role in several biological processes, such as cellular proliferation and tissue regeneration, and its dysregulation is involved in the pathogenesis of many autoimmune diseases. Several evidences support its role especially in bone complications of rheumatic diseases. In Rheumatoid Arthritis (RA), the Wnt signaling is implicated in systemic and localized bone loss, while available data of its role in Spondyloarthritis (SpA) are conflicting. In the last few decades, the quality of life of rheumatic patients has been dramatically improved by biological therapy, targeting cytokines involved in the pathogenesis of these diseases like tumor necrosis factor (TNF)α, interleukin (IL)-1, IL-6, IL-17. In this review, we reviewed the role of Wnt signaling in RA and SpA, focusing on the effect of biological therapy on this pathway and its possible clinical implications. Full article
(This article belongs to the Special Issue Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0)
Show Figures

Figure 1

Open AccessReview
Role of Microparticles in the Pathogenesis of Inflammatory Joint Diseases
Int. J. Mol. Sci. 2019, 20(21), 5453; https://doi.org/10.3390/ijms20215453 - 01 Nov 2019
Abstract
Rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA) make up a group of chronic immune-mediated inflammatory diseases (IMIDs). The course of these diseases involves chronic inflammation of joints and enthesopathies, which can result in joint damage and [...] Read more.
Rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA) make up a group of chronic immune-mediated inflammatory diseases (IMIDs). The course of these diseases involves chronic inflammation of joints and enthesopathies, which can result in joint damage and disability. Microparticles (MPs) are a group of small spherical membranous vesicles. The structure and cellular origin of MPs, mechanisms that stimulate their secretion and the place of their production, determine their biological properties, which could become manifest in the pathogenesis of immune-mediated inflammatory diseases. Microparticles can stimulate synovitis with proinflammatory cytokines and chemokines. MPs may also contribute to the pathogenesis of rheumatic diseases by the formation of immune complexes and complement activation, pro-coagulation activity, activation of vascular endothelium cells, and stimulation of metalloproteinase production. It seems that in the future, microparticles can become a modern marker of disease activity, a response to treatment, and, possibly, they can be used in the prognosis of the course of arthritis. The knowledge of the complexity of MPs biology remains incomplete and it requires further comprehensive studies to explain how they affect the development of rheumatic diseases. This review focuses on the immunopathogenic and therapeutic role of MPs in chronic immune-mediated inflammatory joint diseases. Full article
(This article belongs to the Special Issue Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0)
Show Figures

Figure 1

Back to TopTop