ijms-logo

Journal Browser

Journal Browser

Regulation of Gene Expression During Embryonic Development

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: closed (31 January 2021) | Viewed by 66084

Special Issue Editors

Department of Biology, University of North Georgia, 3820 Mundy Mill Road, Oakwood, GA 30566, USA
Interests: Developmental Biology
Special Issues, Collections and Topics in MDPI journals
Department of Biology, University of North Georgia, Gainesville, GA 30597, USA
Interests: metabolite damage and repair mechanism in plants; comparative genomics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of the International Journal of Molecular Science shall encompass topics regarding the evolution of regulation of gene expression during eukaryotic embryonic development. Topics may include but not be limited to the evolution of differential gene expression at the level of transcription, mRNA processing, translation, and/or subcellular localization of protein expression. Further, data on how mutations at the level of the DNA have led to divergent gene regulation mechanisms, genetic regulatory networks, and/or the development of variable morphological structures between evolutionarily divergent lineages are acceptable. Research manuscripts and comprehensive reviews adhering to the journal’s aims will be accepted.

Dr. Adam Davis
Dr. Jo Qian
Dr. Ghulam Hasnain
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 4475 KiB  
Article
STAT3 Is an Upstream Regulator of Granzyme G in the Maternal-To-Zygotic Transition of Mouse Embryos
by Huan Ou-Yang, Shinn-Chih Wu, Li-Ying Sung, Shiao-Hsuan Yang, Shang-Hsun Yang, Kowit-Yu Chong and Chuan-Mu Chen
Int. J. Mol. Sci. 2021, 22(1), 460; https://doi.org/10.3390/ijms22010460 - 05 Jan 2021
Cited by 7 | Viewed by 3038
Abstract
The maternal-to-zygotic transition (MZT), which controls maternal signaling to synthesize zygotic gene products, promotes the preimplantation development of mouse zygotes to the two-cell stage. Our previous study reported that mouse granzyme g (Gzmg), a serine-type protease, is required for the MZT. In this [...] Read more.
The maternal-to-zygotic transition (MZT), which controls maternal signaling to synthesize zygotic gene products, promotes the preimplantation development of mouse zygotes to the two-cell stage. Our previous study reported that mouse granzyme g (Gzmg), a serine-type protease, is required for the MZT. In this study, we further identified the maternal factors that regulate the Gzmg promoter activity in the zygote to the two-cell stage of mouse embryos. A full-length Gzmg promoter from mouse genomic DNA, FL-pGzmg (−1696~+28 nt), was cloned, and four deletion constructs of this Gzmg promoter, Δ1-pGzmg (−1369~+28 nt), Δ2-pGzmg (−939~+28 nt), Δ3-pGzmg (−711~+28 nt) and Δ4-pGzmg (−417~+28 nt), were subsequently generated. Different-sized Gzmg promoters were used to perform promoter assays of mouse zygotes and two-cell stage embryos. The results showed that Δ4-pGzmg promoted the highest expression level of the enhanced green fluorescent protein (EGFP) reporter in the zygotes and two-cell embryos. The data suggested that time-specific transcription factors upregulated Gzmg by binding cis-elements in the −417~+28-nt Gzmg promoter region. According to the results of the promoter assay, the transcription factor binding sites were predicted and analyzed with the JASPAR database, and two transcription factors, signal transducer and activator of transcription 3 (STAT3) and GA-binding protein alpha (GABPα), were identified. Furthermore, STAT3 and GABPα are expressed and located in zygote pronuclei and two-cell nuclei were confirmed by immunofluorescence staining; however, only STAT3 was recruited to the mouse zygote pronuclei and two-cell nuclei injected with the Δ4-pGzmg reporter construct. These data indicated that STAT3 is a maternal transcription factor and may upregulate Gzmg to promote the MZT. Furthermore, treatment with a STAT3 inhibitor, S3I-201, caused mouse embryonic arrest at the zygote and two-cell stages. These results suggest that STAT3, a maternal protein, is a critical transcription factor and regulates Gzmg transcription activity in preimplantation mouse embryos. It plays an important role in the maternal-to-zygotic transition during early embryonic development. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Figure 1

25 pages, 10313 KiB  
Article
N-Acetyl-d-Glucosamine Kinase Interacts with NudC and Lis1 in Dynein Motor Complex and Promotes Cell Migration
by Md. Ariful Islam, Ho Jin Choi, Raju Dash, Syeda Ridita Sharif, Diyah Fatimah Oktaviani, Dae-Hyun Seog and Il Soo Moon
Int. J. Mol. Sci. 2021, 22(1), 129; https://doi.org/10.3390/ijms22010129 - 24 Dec 2020
Cited by 9 | Viewed by 3672
Abstract
Recently, we showed that N-acetylglucosamine kinase (NAGK), an enzyme of amino sugar metabolism, interacts with dynein light chain roadblock type 1 (DYNLRB1) and promotes the functions of dynein motor. Here, we report that NAGK interacts with nuclear distribution protein C (NudC) and [...] Read more.
Recently, we showed that N-acetylglucosamine kinase (NAGK), an enzyme of amino sugar metabolism, interacts with dynein light chain roadblock type 1 (DYNLRB1) and promotes the functions of dynein motor. Here, we report that NAGK interacts with nuclear distribution protein C (NudC) and lissencephaly 1 (Lis1) in the dynein complex. Yeast two-hybrid assays, pull-down assays, immunocytochemistry, and proximity ligation assays revealed NAGK–NudC–Lis1–dynein complexes around nuclei, at the leading poles of migrating HEK293T cells, and at the tips of migratory processes of cultured rat neuroblast cells. The exogenous expression of red fluorescent protein (RFP)-tagged NAGK accelerated HEK293T cell migration during in vitro wound-healing assays and of neurons during in vitro neurosphere migration and in utero electroporation assays, whereas NAGK knockdown by short hairpin RNA (shRNA) delayed migration. Finally, a small NAGK peptide derived from the NudC interacting domain in in silico molecular docking analysis retarded the migrations of HEK293T and SH-SY5Y cells. These data indicate a functional interaction between NAGK and dynein–NudC–Lis1 complex at the nuclear envelope is required for the regulation of cell migration. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Figure 1

13 pages, 2587 KiB  
Article
Lipid Stores and Lipid Metabolism Associated Gene Expression in Porcine and Bovine Parthenogenetic Embryos Revealed by Fluorescent Staining and RNA-seq
by Arkadiusz Kajdasz, Ewelina Warzych, Natalia Derebecka, Zofia E. Madeja, Dorota Lechniak, Joanna Wesoly and Piotr Pawlak
Int. J. Mol. Sci. 2020, 21(18), 6488; https://doi.org/10.3390/ijms21186488 - 05 Sep 2020
Cited by 21 | Viewed by 3610
Abstract
Compared to other mammalian species, porcine oocytes and embryos are characterized by large amounts of lipids stored mainly in the form of droplets in the cytoplasm. The amount and the morphology of lipid droplets (LD) change throughout the preimplantation development, however, relatively little [...] Read more.
Compared to other mammalian species, porcine oocytes and embryos are characterized by large amounts of lipids stored mainly in the form of droplets in the cytoplasm. The amount and the morphology of lipid droplets (LD) change throughout the preimplantation development, however, relatively little is known about expression of genes involved in lipid metabolism of early embryos. We compared porcine and bovine blastocyst stage embryos as well as dissected inner cell mass (ICM) and trophoblast (TE) cell populations with regard to lipid droplet storage and expression of genes functionally annotated to selected lipid gene ontology terms using RNA-seq. Comparing the number and the volume occupied by LD between bovine and porcine blastocysts, we have found significant differences both at the level of single embryo and a single blastomere. Aside from different lipid content, we found that embryos regulate the lipid metabolism differentially at the gene expression level. Out of 125 genes, we found 73 to be differentially expressed between entire porcine and bovine blastocyst, and 36 and 51 to be divergent between ICM and TE cell lines. We noticed significant involvement of cholesterol and ganglioside metabolism in preimplantation embryos, as well as a possible shift towards glucose, rather than pyruvate dependence in bovine embryos. A number of genes like DGAT1, CD36 or NR1H3 may serve as lipid associated markers indicating distinct regulatory mechanisms, while upregulated PLIN2, APOA1, SOAT1 indicate significant function during blastocyst formation and cell differentiation in both models. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Figure 1

22 pages, 3660 KiB  
Article
Deep Transcriptomic Analysis Reveals the Dynamic Developmental Progression during Early Development of Channel Catfish (Ictalurus punctatus)
by Xiaoli Ma, Baofeng Su, Yuan Tian, Nathan J. C. Backenstose, Zhi Ye, Anthony G. Moss, Thuy-Yen Duong, Xu Wang and Rex A. Dunham
Int. J. Mol. Sci. 2020, 21(15), 5535; https://doi.org/10.3390/ijms21155535 - 02 Aug 2020
Cited by 4 | Viewed by 3900
Abstract
The transition from fertilized egg to larva in fish is accompanied with various biological processes. We selected seven early developmental stages in channel catfish, Ictalurus punctatus, for transcriptome analysis, and covered 22,635 genes with 590 million high-quality RNA-sequencing (seq) reads. Differential expression [...] Read more.
The transition from fertilized egg to larva in fish is accompanied with various biological processes. We selected seven early developmental stages in channel catfish, Ictalurus punctatus, for transcriptome analysis, and covered 22,635 genes with 590 million high-quality RNA-sequencing (seq) reads. Differential expression analysis between neighboring developmental timepoints revealed significantly enriched biological categories associated with growth, development and morphogenesis, which was most evident at 2 vs. 5 days post fertilization (dpf) and 5 vs. 6 dpf. A gene co-expression network was constructed using the Weighted Gene Co-expression Network Analysis (WGCNA) approach and four critical modules were identified. Among candidate hub genes, GDF10, FOXA2, HCEA and SYCE3 were involved in head formation, egg development and the transverse central element of synaptonemal complexes. CK1, OAZ2, DARS1 and UBE2V2 were mainly associated with regulation of cell cycle, growth, brain development, differentiation and proliferation of enterocytes. IFI44L and ZIP10 were critical for the regulation of immune activity and ion transport. Additionally, TCK1 and TGFB1 were related to phosphate transport and regulating cell proliferation. All these genes play vital roles in embryogenesis and regulation of early development. These results serve as a rich dataset for functional genomic studies. Our work reveals new insights of the underlying mechanisms in channel catfish early development. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Figure 1

11 pages, 1966 KiB  
Article
Muscular Development in Urechis unicinctus (Echiura, Annelida)
by Yong-Hee Han, Kyoung-Bin Ryu, Brenda I. Medina Jiménez, Jung Kim, Hae-Youn Lee and Sung-Jin Cho
Int. J. Mol. Sci. 2020, 21(7), 2306; https://doi.org/10.3390/ijms21072306 - 26 Mar 2020
Cited by 4 | Viewed by 3897
Abstract
Echiura is one of the most intriguing major subgroups of phylum Annelida because, unlike most other annelids, echiuran adults lack metameric body segmentation. Urechis unicinctus lives in U-shape burrows of soft sediments. Little is known about the molecular mechanisms underlying the development of [...] Read more.
Echiura is one of the most intriguing major subgroups of phylum Annelida because, unlike most other annelids, echiuran adults lack metameric body segmentation. Urechis unicinctus lives in U-shape burrows of soft sediments. Little is known about the molecular mechanisms underlying the development of U. unicinctus. Herein, we overviewed the developmental process from zygote to juvenile U. unicinctus using immunohistochemistry and F-actin staining for the nervous and muscular systems, respectively. Through F-actin staining, we found that muscle fibers began to form in the trochophore phase and that muscles for feeding were produced first. Subsequently, in the segmentation larval stage, the transversal muscle was formed in the shape of a ring in an anterior-to-posterior direction with segment formation, as well as a ventromedian muscle for the formation of a ventral nerve cord. After that, many muscle fibers were produced along the entire body and formed the worm-shaped larva. Finally, we investigated the spatiotemporal expression of Uun_st-mhc, Uun_troponin I, Uun_calponin, and Uun_twist genes found in U. unicinctus. During embryonic development, the striated and smooth muscle genes were co-expressed in the same region. However, the adult body wall muscles showed differential gene expression of each muscle layer. The results of this study will provide the basis for the understanding of muscle differentiation in Echiura. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Figure 1

21 pages, 9186 KiB  
Article
Proteomics Analysis Reveals that Warburg Effect along with Modification in Lipid Metabolism Improves In Vitro Embryo Development under Low Oxygen
by Qaisar Shahzad, Liping Pu, Armughan Ahmed Wadood, Muhammad Waqas, Long Xie, Chandra Shekhar Pareek, Huiyan Xu, Xianwei Liang and Yangqing Lu
Int. J. Mol. Sci. 2020, 21(6), 1996; https://doi.org/10.3390/ijms21061996 - 14 Mar 2020
Cited by 12 | Viewed by 4991
Abstract
The molecular mechanism regulating embryo development under reduced oxygen tension remains elusive. This study aimed to identify the molecular mechanism impacting embryo development under low oxygen conditions. Buffalo embryos were cultured under 5% or 20% oxygen and were evaluated according to their morphological [...] Read more.
The molecular mechanism regulating embryo development under reduced oxygen tension remains elusive. This study aimed to identify the molecular mechanism impacting embryo development under low oxygen conditions. Buffalo embryos were cultured under 5% or 20% oxygen and were evaluated according to their morphological parameters related to embryo development. The protein profiles of these embryos were compared using iTRAQ-based quantitative proteomics. Physiological O2 (5%) significantly promoted blastocyst yield, hatching rate, embryo quality and cell count as compared to atmospheric O2 (20%). The embryos in the 5% O2 group had an improved hatching rate of cryopreserved blastocysts post-warming (p < 0.05). Comparative proteome profiles of hatched blastocysts cultured under 5% vs. 20% O2 levels identified 43 differentially expressed proteins (DEPs). Functional analysis indicated that DEPs were mainly associated with glycolysis, fatty acid degradation, inositol phosphate metabolism and terpenoid backbone synthesis. Our results suggest that embryos under physiological oxygen had greater developmental potential due to the pronounced Warburg Effect (aerobic glycolysis). Moreover, our proteomic data suggested that higher lipid degradation, an elevated cholesterol level and a higher unsaturated to saturated fatty acid ratio might be involved in the better cryo-survival ability reported in embryos cultured under low oxygen. These data provide new information on the early embryo protein repertoire and general molecular mechanisms of embryo development under varying oxygen levels. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Figure 1

14 pages, 2609 KiB  
Article
Proteomics Analysis of Early Developmental Stages of Zebrafish Embryos
by Kathiresan Purushothaman, Prem Prakash Das, Christopher Presslauer, Teck Kwang Lim, Steinar D. Johansen, Qingsong Lin and Igor Babiak
Int. J. Mol. Sci. 2019, 20(24), 6359; https://doi.org/10.3390/ijms20246359 - 17 Dec 2019
Cited by 20 | Viewed by 6006
Abstract
Zebrafish is a well-recognized organism for investigating vertebrate development and human diseases. However, the data on zebrafish proteome are scarce, particularly during embryogenesis. This is mostly due to the overwhelming abundance of egg yolk proteins, which tend to mask the detectable presence of [...] Read more.
Zebrafish is a well-recognized organism for investigating vertebrate development and human diseases. However, the data on zebrafish proteome are scarce, particularly during embryogenesis. This is mostly due to the overwhelming abundance of egg yolk proteins, which tend to mask the detectable presence of less abundant proteins. We developed an efficient procedure to reduce the amount of yolk in zebrafish early embryos to improve the Liquid chromatography–tandem mass spectrometry (LC–MS)-based shotgun proteomics analysis. We demonstrated that the deyolking procedure resulted in a greater number of proteins being identified. This protocol resulted in approximately 2-fold increase in the number of proteins identified in deyolked samples at cleavage stages, and the number of identified proteins increased greatly by 3–4 times compared to non-deyolked samples in both oblong and bud stages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed a high number of functional proteins differentially accumulated in the deyolked versus non-deyolked samples. The most prominent enrichments after the deyolking procedure included processes, functions, and components related to cellular organization, cell cycle, control of replication and translation, and mitochondrial functions. This deyolking procedure improves both qualitative and quantitative proteome analyses and provides an innovative tool in molecular embryogenesis of polylecithal animals, such as fish, amphibians, reptiles, or birds. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Figure 1

18 pages, 6577 KiB  
Article
The PPARδ Agonist GW501516 Improves Lipolytic/Lipogenic Balance through CPT1 and PEPCK during the Development of Pre-Implantation Bovine Embryos
by Muhammad Idrees, Lianguang Xu, Marwa El Sheikh, Tabinda Sidrat, Seok-Hwan Song, Myeong-Don Joo, Kyeong-Lim Lee and Il-Keun Kong
Int. J. Mol. Sci. 2019, 20(23), 6066; https://doi.org/10.3390/ijms20236066 - 02 Dec 2019
Cited by 14 | Viewed by 4775
Abstract
The PPARs (peroxisome proliferator-activated receptors) play critical roles in the regulation of lipid and glucose metabolism. PPARδ, a member of the PPARs family, is associated with decreased susceptibility to ectopic lipid deposition and is implicated in the regulation of mitochondrial processes. The current [...] Read more.
The PPARs (peroxisome proliferator-activated receptors) play critical roles in the regulation of lipid and glucose metabolism. PPARδ, a member of the PPARs family, is associated with decreased susceptibility to ectopic lipid deposition and is implicated in the regulation of mitochondrial processes. The current study aimed to determine the role of PPARδ in fatty acid β-oxidation and its influence on PEPCK for the lipogenic/lipolytic balance during in vitro bovine oocyte maturation and embryo development. Activation of PPARδ by GW501516, but not 2-BP, was indicated by intact embryonic PEPCK (cytosolic) and CPT1 expression and the balance between free fatty acids and mitochondrial β-oxidation that reduced ROS and inhibited p-NF-κB nuclear localization. Genes involved in lipolysis, fatty acid oxidation, and apoptosis showed significant differences after the GW501516 treatment relative to the control- and 2-BP-treated embryos. GSK3787 reversed the PPARδ-induced effects by reducing PEPCK and CPT1 expression and the mitochondrial membrane potential, revealing the importance of PPARδ/PEPCK and PPARδ/CPT1 for controlling lipolysis during embryo development. In conclusion, GW501516-activated PPARδ maintained the correlation between lipolysis and lipogenesis by enhancing PEPCK and CPT1 to improve bovine embryo quality. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Graphical abstract

18 pages, 3099 KiB  
Article
Expression Analysis of mRNA Decay of Maternal Genes during Bombyx mori Maternal-to-Zygotic Transition
by Meirong Zhang, Pingzhen Xu, Huilin Pang, Tao Chen and Guozheng Zhang
Int. J. Mol. Sci. 2019, 20(22), 5651; https://doi.org/10.3390/ijms20225651 - 12 Nov 2019
Cited by 4 | Viewed by 2678
Abstract
Maternal genes play an important role in the early embryonic development of the silkworm. Early embryonic development without new transcription depends on maternal components stored in the egg during oocyte maturation. The maternal-to-zygotic transition (MZT) is a tightly regulated process that includes maternal [...] Read more.
Maternal genes play an important role in the early embryonic development of the silkworm. Early embryonic development without new transcription depends on maternal components stored in the egg during oocyte maturation. The maternal-to-zygotic transition (MZT) is a tightly regulated process that includes maternal mRNAs elimination and zygotic transcription initiation. This process has been extensively studied within model species. Each model organism has a unique pattern of maternal transcriptional clearance classes in MZT. In this study, we identified 66 maternal genes through bioinformatics analysis and expression analysis in the eggs of silkworm virgin moths (Bombyx mori). All 66 maternal genes were expressed in vitellogenesis in day eight female pupae. During MZT, the degradation of maternal gene mRNAs could be divided into three clusters. We found that eight maternal genes of cluster 1 remained stable from 0 to 3.0 h, 17 maternal genes of cluster 2 were significantly decayed from 0.5 to 1.0 h and 41 maternal genes of cluster 3 were significantly decayed after 1.5 h. Therefore, the initial time-point of degradation of cluster 2 was earlier than that of cluster 3. The maternal gene mRNAs decay of clusters 2 and 3 is first initiated by maternal degradation activity. Our study expands upon the identification of silkworm maternal genes and provides a perspective for further research of the embryo development in Bombyx mori. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Figure 1

12 pages, 2547 KiB  
Article
Spatiotemporal Expression of Anticoagulation Factor Antistasin in Freshwater Leeches
by Hee-Jin Kwak, Jeong-Su Park, Brenda Irene Medina Jiménez, Soon Cheol Park and Sung-Jin Cho
Int. J. Mol. Sci. 2019, 20(16), 3994; https://doi.org/10.3390/ijms20163994 - 16 Aug 2019
Cited by 7 | Viewed by 3027
Abstract
Antistasin, which was originally discovered in the salivary glands of the Mexican leech Haementeria officinalis, was newly isolated from Helobdella austinensis. To confirm the temporal expression of antistasin during embryogenesis, we carried out semi-quantitative RT-PCR. Hau-antistasin1 was uniquely expressed at [...] Read more.
Antistasin, which was originally discovered in the salivary glands of the Mexican leech Haementeria officinalis, was newly isolated from Helobdella austinensis. To confirm the temporal expression of antistasin during embryogenesis, we carried out semi-quantitative RT-PCR. Hau-antistasin1 was uniquely expressed at stage 4 of the cleavage and was strongly expressed in the late stages of organogenesis, as were other antistasin members. In order to confirm the spatial expression of antistasin, we performed fluorescence in situ hybridization in the late stages of organogenesis. The expression of each antistasin in the proboscis showed a similar pattern and varied in expression in the body. In addition, the spatial expression of antistasin orthologs in different leeches showed the possibility of different function across leech species. Hau-antistasin1 was expressed in the same region as hedgehog, which is a known mediator of signal transduction pathway. Hau-antistasin1 is probably a downstream target of Hedgehog signaling, involved in segment polarity signal pathway. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Graphical abstract

Review

Jump to: Research

20 pages, 2171 KiB  
Review
Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis
by Marta Figueiredo, Rita Zilhão and Hélia Neves
Int. J. Mol. Sci. 2020, 21(16), 5765; https://doi.org/10.3390/ijms21165765 - 11 Aug 2020
Cited by 6 | Viewed by 6369
Abstract
The thymus generates central immune tolerance by producing self-restricted and self-tolerant T-cells as a result of interactions between the developing thymocytes and the stromal microenvironment, mainly formed by the thymic epithelial cells. The thymic epithelium derives from the endoderm of the pharyngeal pouches, [...] Read more.
The thymus generates central immune tolerance by producing self-restricted and self-tolerant T-cells as a result of interactions between the developing thymocytes and the stromal microenvironment, mainly formed by the thymic epithelial cells. The thymic epithelium derives from the endoderm of the pharyngeal pouches, embryonic structures that rely on environmental cues from the surrounding mesenchyme for its development. Here, we review the most recent advances in our understanding of the molecular mechanisms involved in early thymic organogenesis at stages preceding the expression of the transcription factor Foxn1, the early marker of thymic epithelial cells identity. Foxn1-independent developmental stages, such as the specification of the pharyngeal endoderm, patterning of the pouches, and thymus fate commitment are discussed, with a special focus on epithelial–mesenchymal interactions. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Figure 1

29 pages, 4573 KiB  
Review
Adipokines Expression and Effects in Oocyte Maturation, Fertilization and Early Embryo Development: Lessons from Mammals and Birds
by Anthony Estienne, Adeline Brossaud, Maxime Reverchon, Christelle Ramé, Pascal Froment and Joëlle Dupont
Int. J. Mol. Sci. 2020, 21(10), 3581; https://doi.org/10.3390/ijms21103581 - 19 May 2020
Cited by 15 | Viewed by 9806
Abstract
Some evidence shows that body mass index in humans and extreme weights in animal models, including avian species, are associated with low in vitro fertilization, bad oocyte quality, and embryo development failures. Adipokines are hormones mainly produced and released by white adipose tissue. [...] Read more.
Some evidence shows that body mass index in humans and extreme weights in animal models, including avian species, are associated with low in vitro fertilization, bad oocyte quality, and embryo development failures. Adipokines are hormones mainly produced and released by white adipose tissue. They play a key role in the regulation of energy metabolism. However, they are also involved in many other physiological processes including reproductive functions. Indeed, leptin and adiponectin, the most studied adipokines, but also novel adipokines including visfatin and chemerin, are expressed within the reproductive tract and modulate female fertility. Much of the literature has focused on the physiological and pathological roles of these adipokines in ovary, placenta, and uterine functions. The purpose of this review is to summarize the current knowledge regarding the involvement of leptin, adiponectin, visfatin, and chemerin in the oocyte maturation, fertilization, and embryo development in both mammals and birds. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Figure 1

11 pages, 1198 KiB  
Review
A Tribute to Lewis Wolpert and His Ideas on the 50th Anniversary of the Publication of His Paper ‘Positional Information and the Spatial Pattern of Differentiation’. Evidence for a Timing Mechanism for Setting Up the Vertebrate Anterior-Posterior (A-P) Axis
by Antony J. Durston
Int. J. Mol. Sci. 2020, 21(7), 2552; https://doi.org/10.3390/ijms21072552 - 07 Apr 2020
Cited by 1 | Viewed by 2832
Abstract
This article is a tribute to Lewis Wolpert and his ideas on the occasion of the recent 50th anniversary of the publication of his article ‘Positional Information and the Spatial Pattern of Differentiation’. This tribute relates to another one of his ideas: his [...] Read more.
This article is a tribute to Lewis Wolpert and his ideas on the occasion of the recent 50th anniversary of the publication of his article ‘Positional Information and the Spatial Pattern of Differentiation’. This tribute relates to another one of his ideas: his early ‘Progress Zone’ timing model for limb development. Recent evidence is reviewed showing a mechanism sharing features with this model patterning the main body axis in early vertebrate development. This tribute celebrates the golden era of Developmental Biology. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Figure 1

15 pages, 1321 KiB  
Review
More than just Stem Cells: Functional Roles of the Transcription Factor Sox2 in Differentiated Glia and Neurons
by Sara Mercurio, Linda Serra and Silvia K. Nicolis
Int. J. Mol. Sci. 2019, 20(18), 4540; https://doi.org/10.3390/ijms20184540 - 13 Sep 2019
Cited by 64 | Viewed by 6111
Abstract
The Sox2 transcription factor, encoded by a gene conserved in animal evolution, has become widely known because of its functional relevance for stem cells. In the developing nervous system, Sox2 is active in neural stem cells, and important for their self-renewal; differentiation to [...] Read more.
The Sox2 transcription factor, encoded by a gene conserved in animal evolution, has become widely known because of its functional relevance for stem cells. In the developing nervous system, Sox2 is active in neural stem cells, and important for their self-renewal; differentiation to neurons and glia normally involves Sox2 downregulation. Recent evidence, however, identified specific types of fully differentiated neurons and glia that retain high Sox2 expression, and critically require Sox2 function, as revealed by functional studies in mouse and in other animals. Sox2 was found to control fundamental aspects of the biology of these cells, such as the development of correct neuronal connectivity. Sox2 downstream target genes identified within these cell types provide molecular mechanisms for cell-type-specific Sox2 neuronal and glial functions. SOX2 mutations in humans lead to a spectrum of nervous system defects, involving vision, movement control, and cognition; the identification of neurons and glia requiring Sox2 function, and the investigation of Sox2 roles and molecular targets within them, represents a novel perspective for the understanding of the pathogenesis of these defects. Full article
(This article belongs to the Special Issue Regulation of Gene Expression During Embryonic Development)
Show Figures

Graphical abstract

Back to TopTop