Deep Transcriptomic Analysis Reveals the Dynamic Developmental Progression during Early Development of Channel Catfish (Ictalurus punctatus)
Abstract
:1. Introduction
2. Results
2.1. Morphology of the Channel Catfish Embryos/Larvae during Early Development
2.2. Global Analysis of Channel Catfish Early Development Transcriptome
2.3. Identification of DEGs during Early Development of Channel Catfish
2.4. Gene Ontology Enrichment Analysis of DEGs at Different Stages
2.5. Construction of Gene Co-Expression Networks
2.6. Gene Co-Expression Modules Correspond to Channel Catfish Early Development
2.7. Functional Enrichment of Genes in the Eight Selected Modules
2.8. Protein-Protein Interaction Network Construction and Analysis of Selected Modules
3. Discussion
3.1. Turquoise Module (Hub Genes and Node Genes)
3.2. Black Module
3.3. Blue Module
3.4. Pink Module
3.5. Green Module
3.6. Grey Module
3.7. Purple Module
3.8. Brown Module
4. Materials and Methods
4.1. Ethics Statement
4.2. Sampling of Channel Catfish
4.3. Microscopic Anatomy
4.4. RNA Isolation, Library Construction and Sequencing
4.5. Reads Mapping and Differential Expression
4.6. Enrichment Analysis
4.7. Gene Co-Expression Network Construction
4.8. Identification of Development-Related Modules and Visualization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RNA-Seq | RNA-sequencing |
WGCNA | Weighted gene co-expressed network analysis |
FPKM | Fragments per kilobase of exon model per million reads mapped |
WGS | Whole-genome sequencing |
DEGs | Differentially expressed genes |
PE | Paired-end |
AA | Amino acid |
log2FC | Log2-fold change |
DPF | Days post fertilization |
GO | Gene ontology |
PPI | Protein–protein interaction network |
HCS | HiSeq Control Software |
SCS | Synaptonemal complexes |
ZFIN | Zebrafish Information Network |
MSRs | Module-stage relationships |
References
- Eschmeyer, W.N.; Fricke, R.; Fong, J.D.; Polack, D.A. Marine fish diversity: History of knowledge and discovery (Pisces). Zootaxa 2010, 2525, 19–50. [Google Scholar] [CrossRef]
- Tan, Y.; Chang, S.K. Isolation and characterization of collagen extracted from channel catfish (Ictalurus punctatus) skin. Food Chem. 2018, 242, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, M.; Fu, L.; Zhong, L.; Liu, G.; Zheng, Y.; Cheng, X.; Bian, W. Liver transcriptome analysis and cortisol immune-response modulation in lipopolysaccharide-stimulated in channel catfish (Ictalurus punctatus). Fish Shellfish Immunol. 2020, 101, 19–50. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Liu, S.; Yao, J.; Zhang, Y.; Yuan, Z.; Jiang, C.; Chen, A.; Fu, Q.; Su, B.; Dunham, R.; et al. Transcriptome display during testicular differentiation of channel catfish (Ictalurus punctatus) as revealed by RNA-Seq analysis. Biol. Reprod. 2016, 95, 19. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fu, Q.; Liu, Y.; Wang, X.; Dunham, R.; Liu, S.; Bao, L.; Zeng, Q.; Zhou, T.; Li, N.; et al. Comparative transcriptome analysis reveals conserved branching morphogenesis related genes involved in chamber formation of catfish swimbladder. Physiol. Genom. 2018, 50, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Saksena, V.P.; Riggs, C.D.; Yamamoto, K. Early development of the channel catfish. Progress. Fish-Cult. 1961, 23, 156–161. [Google Scholar] [CrossRef]
- Wellner, K. The Development of the Pronephros during the Embryonic and Early Larval Life of the Catfish (Ictalurus punctatus) (1932), by Rachel L. Carson. Available online: https://hpsrepository.asu.edu/handle/10776/7567 (accessed on 2 August 2020).
- Carson, R.L. The Development of the Pronephros During the Embryonic and Early Larval Life of the Catfish (Ictalurus punctatus). Master’s Thesis, John Hopkins University, Baltimore, MD, USA, 1932. [Google Scholar]
- Tucker, C.S.; Hargreaves, J.A. Biology and Culture of Channel Catfish, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Vesterlund, L.; Jiao, H.; Unneberg, P.; Hovatta, O.; Kere, J. The zebrafish transcriptome during early development. BMC Dev. Biol. 2011, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Sharov, A.A.; Piao, Y.; Matoba, R.; Dudekula, D.B.; Qian, Y.; VanBuren, V.; Falco, G.; Martin, P.R.; Stagg, C.A.; Bassy, U.C. Transcriptome analysis of mouse stem cells and early embryos. PLoS Biol. 2003, 1. [Google Scholar] [CrossRef]
- Hartl, D.; Irmler, M.; Römer, I.; Mader, M.T.; Mao, L.; Zabel, C.; Angelis, M.H.; Beckers, J.; Klose, J. Transcriptome and proteome analysis of early embryonic mouse brain development. Proteomics 2008, 8, 1257–1265. [Google Scholar] [CrossRef]
- Graveley, B.R.; Brooks, A.N.; Carlson, J.W.; Duff, M.O.; Landolin, J.M.; Yang, L.; Artieri, G.G.; Baren, M.J.; Boley, N.; Booth, B.W. The developmental transcriptome of Drosophila melanogaster. Nature 2011, 471, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, S.; Yao, J.; Bao, L.; Zhang, J.; Li, Y.; Jiang, C.; Sun, L.; Wang, R.; Zhang, Y.; et al. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat. Commun. 2016, 7, 11757. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.A.; Wang, Z. Next-generation transcriptome assembly. Nat. Rev. Genet. 2011, 12, 671. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.P.; Zhu, L.; Huang, D.S. Mining the bladder cancer-associated genes by an integrated strategy for the construction and analysis of differential co-expression networks. BMC Genom. 2015, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.A.; Horvath, S.; Geschwind, D.H. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl. Acad. Sci. USA 2010, 107, 12698–12703. [Google Scholar] [CrossRef] [Green Version]
- Xue, Z.; Huang, K.; Cai, C.; Cai, L.; Jiang, C.-Y.; Feng, Y.; Liu, Z.; Zeng, Q.; Cheng, L.; Sun, Y.E. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 2013, 500, 593–597. [Google Scholar] [CrossRef] [Green Version]
- Clarke, C.; Madden, S.F.; Doolan, P.; Aherne, S.T.; Joyce, H.; O’Driscoll, L.; Gallagher, W.M.; Hennessy, B.T.; Moriarty, M.; Crown, J. Correlating transcriptional networks to breast cancer survival: A large-scale coexpression analysis. Carcinogenesis 2013, 34, 2300–2308. [Google Scholar] [CrossRef]
- Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4. [Google Scholar] [CrossRef]
- Esposti, D.D.; Almunia, C.; Guery, M.A.; Koenig, N.; Armengaud, J.; Chaumot, A.; Geffard, O. Co-expression network analysis identifies gonad-and embryo-associated protein modules in the sentinel species Gammarus fossarum. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Nie, Q.; Si, C.; Wang, C.; Chen, Y.; Sun, W.; Pan, L.; Guo, J.; Kong, J.; Cui, Y. Weighted gene co-expression network analysis for RNA-sequencing data of the varicose veins transcriptome. Front. Physiol. 2019, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Langfelder, P.; Fuller, T.; Dong, J.; Li, A.; Hovarth, S. Weighted gene coexpression network analysis: State of the art. J. Biopharm. Stat. 2010, 20, 281–300. [Google Scholar] [CrossRef] [PubMed]
- Kadarmideen, H.N.; Watson-Haigh, N.S. Building gene co-expression networks using transcriptomics data for systems biology investigations: Comparison of methods using microarray data. Bioinformation 2012, 8, 855. [Google Scholar] [CrossRef] [PubMed]
- Makeeva, A.; Emel’yanova, N. Early development of the channel catfish, Ictalurus punctatus. J. Lchthyol. 1993, 33, 87. [Google Scholar]
- Herpin, A.; Lelong, C.; Favrel, P. Transforming growth factor-β-related proteins: An ancestral and widespread superfamily of cytokines in metazoans. Dev. Comp. Immunol. 2004, 28, 461–485. [Google Scholar] [CrossRef] [PubMed]
- Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Stein, T.I.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H. GeneCards Version 3: The human gene integrator. Database 2010, 2010. [Google Scholar] [CrossRef]
- Belinky, F.; Nativ, N.; Stelzer, G.; Zimmerman, S.; Stein, T.I.; Safran, M.; Lancet, D. PathCards: Multi-source consolidation of human biological pathways. Database 2015, 2015. [Google Scholar] [CrossRef]
- Hino, J.; Matsuo, H.; Kangawa, K. Bone morphogenetic protein-3b (BMP-3b) gene expression is correlated with differentiation in rat calvarial osteoblasts. Biochem. Biophys. Res. Commun. 1999, 256, 419–424. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Otsuka, F.; Hino, J.; Miyoshi, T.; Takano, M.; Miyazato, M.; Kangawa, K. Bone morphogenetic protein-3b (BMP-3b) inhibits osteoblast differentiation via Smad2/3 pathway by counteracting Smad1/5/8 signaling. Mol. Cell. Endocrinol. 2012, 350, 78–86. [Google Scholar] [CrossRef]
- Angioni, M.; Denotti, A.; Pinna, S.; Sanna, C.; Montisci, F.; Dessole, G.; Cauli, A. Spa therapy induces clinical improvement and protein changes in patients with chronic back pain. Reumatismo 2019, 71, 119–131. [Google Scholar] [CrossRef]
- Lavon, N.; Yanuka, O.; Benvenisty, N. The effect of overexpression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells. Stem Cells 2006, 24, 1923–1930. [Google Scholar] [CrossRef]
- Wederell, E.D.; Bilenky, M.; Cullum, R.; Thiessen, N.; Dagpinar, M.; Delaney, A.; Varhol, R.; Zhao, Y.; Zeng, T.; Bernier, B.; et al. Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing. Nucleic Acids Res. 2008, 36, 4549–4564. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.W.; Kwak, I.; Lee, K.Y.; Kim, T.H.; Large, M.J.; Stewart, C.L.; Kaestner, K.H.; Lydon, J.P.; DeMayo, F.J. Foxa2 is essential for mouse endometrial gland development and fertility. Biol. Reprod. 2010, 83, 396–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.S.; Sund, N.J.; Vatamaniuk, M.Z.; Matschinsky, F.M.; Stoffers, D.A.; Kaestner, K.H. Foxa2 controls Pdx1 gene expression in pancreatic β-cells in vivo. Diabetes 2002, 51, 2546–2551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, H.; Dingle, S.; Xu, Y.; Besnard, V.; Kaestner, K.H.; Ang, S.-L.; Wert, S.; Stahiman, M.T.; Whitsett, J.A. Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J. Biol. Chem. 2005, 280, 13809–13816. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, M.; Yasumasu, S.; Hiroi, J.; Naruse, K.; Inoue, M.; Iuchi, I. Evolution of teleostean hatching enzyme genes and their paralogous genes. Dev. Genes. Evol. 2006, 216, 769. [Google Scholar] [CrossRef] [PubMed]
- Hishida, R.; Ishihara, T.; Kondo, K.; Katsura, I. hch-1, a gene required for normal hatching and normal migration of a neuroblast in C. elegans, encodes a protein related to TOLLOID and BMP-1. EMBO J. 1996, 15, 4111–4122. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Barrett, A.J. Evolutionary families of metallopeptidases. Meth. Enzymol. 1995, 48, 183–228. [Google Scholar]
- Schramm, S.; Fraune, J.; Naumann, R.; Hernandez-Hernandez, A.; Höög, C.; Cooke, H.J.; Alsheimer, M.; Benavente, R. A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility. PLoS Genet. 2011, 7, e1002088. [Google Scholar] [CrossRef] [Green Version]
- UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2018, 47(D1), D506–D515. [Google Scholar]
- Ruzicka, L.; Howe, D.G.; Ramachandran, S.; Toro, S.; Van Slyke, C.E.; Bradford, Y.M.; Eagle, A.; Fashena, D.; Frazer, K.; Kalita, P. The Zebrafish Information Network: New support for non-coding genes, richer Gene Ontology annotations and the Alliance of Genome Resources. Nucleic Acids Res. 2019, 47(D1), D867–D873. [Google Scholar] [CrossRef] [PubMed]
- Figeac, N.; Mohamed, A.D.; Sun, C.; Schönfelder, M.; Matallanas, D.; Garcia-Munoz, A.; Missiaglia, E.; Collie-Duguid, E.; Mello, V.D.; Pobbati, A.V.; et al. Vgll3 operates via Tead1, Tead3 and Tead4 to influence myogenesis in skeletal muscle. J. Cell Biol. 2019, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjærner-Semb, E.; Ayllon, F.; Kleppe, L.; Sørhus, E.; Skaftnesmo, K.; Furmanek, T.; Segafredo, F.T.; Thorsen, A.; Fjelldal, P.G.; Hansen, T.; et al. Vgll3 and the Hippo pathway are regulated in Sertoli cells upon entry and during puberty in Atlantic salmon testis. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shima, Y.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Chisaka, O.; Takeichi, M.; Uemura, T. Differential expression of the seven-pass transmembrane cadherin genes Celsr1-3 and distribution of the Celsr2 protein during mouse development. Dev. Dyn. 2002, 223, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Tanaka, H.; Nakayama, S.; Iwasaki, M.; Okamoto, H. Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the developing zebrafish hindbrain. Development 2006, 133, 4749–4759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poynter, S.; Monjo, A.; DeWitte-Orr, S. Identification of three class A scavenger receptors from rainbow trout (Oncorhynchus mykiss): SCARA3, SCARA4, and SCARA5. Fish Shellfish Immunol. 2018, 76, 121–125. [Google Scholar] [CrossRef]
- Wilson, P.M.; Fryer, R.H.; Fang, Y.; Hatten, M.E. Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration. J. Neurosci. 2010, 30, 8529–8540. [Google Scholar] [CrossRef]
- Ni, T.; Harlos, K.; Gilbert, R. Structure of astrotactin-2: A conserved vertebrate-specific and perforin-like membrane protein involved in neuronal development. Open Biol. 2016, 6, 160053. [Google Scholar] [CrossRef] [Green Version]
- Sassa, T.; Aizawa, H.; Okamoto, H. Visualization of two distinct classes of neurons by gad2 and zic1 promoter/enhancer elements in the dorsal hindbrain of developing zebrafish reveals neuronal connectivity related to the auditory and lateral line systems. Dev. Dyn. 2007, 236, 706–718. [Google Scholar] [CrossRef]
- Kumari, S.; Mayor, S. ARF1 is directly involved in dynamin-independent endocytosis. Nat. Cell Biol. 2008, 10, 30–41. [Google Scholar] [CrossRef]
- Feng, Y.; Walsh, C.A. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 2004, 44, 279–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkuraya, F.S.; Cai, X.; Emery, C.; Mochida, G.H.; Al-Dosari, M.S.; Felie, J.M.; Hill, R.S.; Barry, B.J.; Partlow, J.N.; Gascon, G.G.; et al. Human mutations in NDE1 cause extreme microcephaly with lissencephaly. Am. J. Hum. Genet. 2011, 88, 536–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertz, O.; Hodgson, L.; Klemke, R.L.; Hahn, K.M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 2006, 440, 1069–1072. [Google Scholar] [CrossRef] [PubMed]
- Eide, E.J.; Virshup, D.M. Casein kinase I: Another cog in the circadian clockworks. Chronobiol. Int. 2001, 18, 389–398. [Google Scholar] [CrossRef]
- Schittek, B.; Sinnberg, T. Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol. Cancer 2014, 13, 231. [Google Scholar] [CrossRef] [Green Version]
- Pongracz, J.E.; Stockley, R.A. Wnt signalling in lung development and diseases. Respir. Res. 2006, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Patapoutian, A.; Reichardt, L.F. Roles of Wnt proteins in neural development and maintenance. Curr. Opin. Neurol. 2000, 10, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Klaus, A.; Birchmeier, W. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 2008, 8, 387. [Google Scholar] [CrossRef]
- Kim, K.R.; Park, S.H.; Kim, H.S.; Rhee, K.H.; Kim, B.G.; Kim, D.G.; Part, M.S.; Kim, H.J.; Kim, S.; Han, B.W. Crystal structure of human cytosolic aspartyl-tRNA synthetase, a component of multi-tRNA synthetase complex. Proteins 2013, 81, 1840–1846. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, D.; Suchowerska, A.K.; Spencer, Z.H.; Jonquieres, G.V.; Klugmann, C.B.; Bongers, A.; Delerue, F.; Stefen, H.; Lttner, L.M.; Fath, T.; et al. In vivo characterization of the aspartyl-tRNA synthetase DARS: Homing in on the leukodystrophy HBSL. Neurobiol. Dis. 2017, 97, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Diodato, D.; Ghezzi, D.; Tiranti, V. The mitochondrial aminoacyl tRNA synthetases: Genes and syndromes. Int. J. Cell Biol. 2014, 2014, 787956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taft, R.J.; Vanderver, A.; Leventer, R.J.; Damiani, S.A.; Simons, C.; Grimmond, S.M.; Miller, D.; Schmidt, J.; Lockhart, P.J.; Pope, K.; et al. Mutations in DARS cause hypomyelination with brain stem and spinal cord involvement and leg spasticity. Am. J. Hum. Genet. 2013, 92, 774–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, J.; Furukawa, Y.; Kubo, N.; Tokura, A.; Hayashi, N.; Nakamura, M.; Matsuda, M.; Sakurabayashi, I. Induction of ubiquitin-conjugating enzyme by aggregated low density lipoprotein in human macrophages and its implications for atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 128–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, Y.; Ziv, T.; Admon, A.; Navon, A. The E2 ubiquitin-conjugating enzymes direct polyubiquitination to preferred lysines. J. Biol. Chem. 2010, 285, 8595–8604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanerva, K.; Mäkitie, L.T.; Pelander, A.; Heiskala, M.; Andersson, L.C. Human ornithine decarboxylase paralogue (ODCp) is an antizyme inhibitor but not an arginine decarboxylase. Biochem. Eng. J. 2008, 409, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Hallen, L.; Burki, Y.; Ebeling, M.; Broger, C.; Siegrist, F.; Oroszlan-Szovik, K.; Bohrmann, B.; Certa, U.; Foser, S. Antiproliferative activity of the human IFN-α-inducible protein IFI44. J. Interferon Cytokine Res. 2007, 27, 675–680. [Google Scholar] [CrossRef]
- Haralambieva, I.H.; Ovsyannikova, I.G.; Kennedy, R.B.; Larrabee, B.R.; Zimmermann, M.T.; Grill, D.E.; Schaid, D.J.; Poland, G.A. Genome-wide associations of CD46 and IFI44L genetic variants with neutralizing antibody response to measles vaccine. Hum. Genet. 2017, 136, 421–435. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Li, L.; Zhimin, L.; Yan, J.; Ji, D.; Chen, Y.; Wu, Y.; Xu, C.; Shao, H.; Wang, J. Potential protein biomarkers for systemic lupus erythematosus determined by bioinformatics analysis. Comput. Biol. Chem. 2009, 83, 107135. [Google Scholar] [CrossRef]
- Levy, M.; Elkoshi, N.; Barber-Zucker, S.; Hoch, E.; Zarivach, R.; Hershfinkel, M.; Sekler, I. Zinc transporter 10 (ZnT10)-dependent extrusion of cellular Mn2+ is driven by an active Ca2+-coupled exchange. J. Biol. Chem. 2019, 294, 5879–5889. [Google Scholar] [CrossRef] [Green Version]
- Hull, M.L.; Johan, M.Z.; Hodge, W.L.; Robertson, S.A.; Ingman, W.V. Host-derived TGFB1 deficiency suppresses lesion development in a mouse model of endometriosis. Am. J. Pathol. 2012, 180, 880–887. [Google Scholar] [CrossRef]
- Ingman, W.V.; Robertson, S.A. The essential roles of TGFB1 in reproduction. Cytokine Growth Factor Rev. 2009, 20, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Manos, P.; Bryan, G.K.; Edmond, J. Creatine kinase activity in postnatal rat brain development and in cultured neurons, astrocytes, and oligodendrocytes. J. Neurochem. 1991, 56, 2101–2107. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Clapier, R.; Mekhfi, H.; Vassort, G. Role of creatine kinase in force development in chemically skinned rat cardiac muscle. J. Gen. Physiol. 1987, 89, 815–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauvigné, F.; Zapater, C.; Cerdà, J. Role of aquaporins during teleost gametogenesis and early embryogenesis. Front. Physiol. 2011, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Sumanas, S.; Jorniak, T.; Lin, S. Identification of novel vascular endothelial–specific genes by the microarray analysis of the zebrafish cloche mutants. Blood 2005, 106, 534–541. [Google Scholar] [CrossRef] [Green Version]
- Cannon, J.; Place, E.; Eve, A.; Bradshaw, C.; Sesay, A.; Morrell, N.; Smith, J. Global analysis of the haematopoietic and endothelial transcriptome during zebrafish development. Mech. Dev. 2013, 130, 122–131. [Google Scholar] [CrossRef]
- Sedykh, I.; Yoon, B.; Roberson, L.; Moskvin, O.; Dewey, C.N.; Grinblat, Y. Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis. Dev. Biol. 2017, 429, 92–104. [Google Scholar] [CrossRef]
- Frank, C.L.; Liu, F.; Wijayatunge, R.; Song, L.; Biegler, M.T.; Yang, M.G.; Vockley, C.M.; Safi, A.; Gersbach, C.A.; Crawford, G.E.; et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat. Neurosci. 2015, 18, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Hillegass, J.M. The role of matrix metalloproteinases in zebrafish (Danio rerio) embryogenesis and their regulation by glucocorticoids. Master’s Thesis, Rutgers University-Graduate School-New Brunswick, New Brunswick, NJ, USA, 2008. [Google Scholar]
- Pociute, K.; Schumacher, J.A.; Sumanas, S. Clec14a genetically interacts with Etv2 and Vegf signaling during vasculogenesis and angiogenesis in zebrafish. BMC Dev. Biol. 2019, 19, 6. [Google Scholar] [CrossRef] [Green Version]
- Barcia, G.; Fleming, M.R.; Deligniere, A.; Gazula, V.R.; Brown, M.R.; Langouet, M.; Chen, H.; Kronengold, J.; Abhyankar, A.; Cilio, R.; et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet. 2012, 44, 1255–1259. [Google Scholar] [CrossRef] [Green Version]
- Oliver, K.L.; Franceschetti, S.; Milligan, C.J.; Muona, M.; Mandelstam, S.A.; Canafoglia, L.; Boguszewska-Chachulska, A.M.; Korczyn, A.D.; Bisulli, F.; Di Bonaventura, C.; et al. Myoclonus epilepsy and ataxia due to KCNC1 mutation: Analysis of 20 cases and K+ channel properties. Ann. Neurol. 2017, 81, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Smitherman, R.O.; Dunham, R.A.; Tave, D. Review of catfish breeding research 1969–1981 at Auburn University. Aquaculture 1983, 33, 197–205. [Google Scholar] [CrossRef]
- Backenstose, N.A. Histological Evaluation of the Development of Respiratory Structures in Channel Catfish (Ictalurus punctatus) and Tra (Pangasianodon hypophthalmus). Master’s Thesis, Aubutn University, Auburn, AL, USA, 2018. [Google Scholar]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wingett, S.W.; Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research 2018, 7, 1338. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Ideker, T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 2010, 27, 431–432. [Google Scholar] [CrossRef] [Green Version]
Module Color | Number of Genes | Correlation (r) | p-Value |
---|---|---|---|
Turquoise | 2228 | 0.99 | 1 × 10−10 |
Black | 255 | −0.74 | 2 × 10−3 |
Blue | 1916 | −0.78 | 1 × 10−3 |
Pink | 142 | −0.68 | 7 × 10−3 |
Green | 910 | 0.77 | 1 × 10−3 |
Grey | 22 | 0.88 | 3 × 10−5 |
Purple | 82 | 0.76 | 2 × 10−3 |
Brown | 1173 | 0.67 | 9 × 10−2 |
Module | Gene ID | Gene Name | Description |
---|---|---|---|
Turquoise | 108262421 | GDF10 | Growth/differentiation factor 10-like |
Turquoise | 108257557 | FOXA2 | Hepatocyte nuclear factor 3-beta-like |
Turquoise | 108259527 | HCEA | High choriolytic enzyme 1-like |
Turquoise | 108268486 | SYCE3 | Synaptonemal complex central element protein 3 |
Black | 108266139 | VGLL3 | Vestigial like family member 3 |
Black | 108281038 | CELSR2 | Cadherin EGF (epidermal growth factor) LAG (laminin G) seven-pass G-type |
Black | 108258146 | SCARA3 | Receptor 2-likescavenger receptor class A member 3 |
Blue | 108267173 | ASTN1 | Astrotactin 1 |
Blue | 108272908 | GAD2 | Glutamate decarboxylase 2 |
Pink | 108255676 | ARF1 | ADP-ribosylation factor 1-like |
Pink | 108277500 | NDE1 | Nude neurodevelopment protein 1 |
Pink | 108254710 | RHOA | Transforming protein rhoa-like |
Green | 108274016 | CK1 | Casein kinase I |
Green | 108266474 | DARS1 | Aspartyl-trna synthetase 1 |
Green | 108264029 | UBE2V2 | Ubiquitin conjugating enzyme E2 variant 2 |
Green | 108279393 | OAZ2 | Ornithine decarboxylase antizyme 2-like |
Grey | 108266103 | IFI44L | Interferon-induced protein 44-like |
Grey | 108264165 | ZIP10 | Zinc transporter 10-like |
Purple | 108279384 | TGFB1 | Transforming growth factor beta-1-like |
Purple | 108262114 | TCK1 | Creatine kinase, testis isozyme-like |
Brown | 108256037 | KCNT1 | Potassium channel subfamily T member 1-like |
Brown | 108275314 | KCNC | Potassium voltage-gated channel subfamily C member 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Su, B.; Tian, Y.; Backenstose, N.J.C.; Ye, Z.; Moss, A.G.; Duong, T.-Y.; Wang, X.; Dunham, R.A. Deep Transcriptomic Analysis Reveals the Dynamic Developmental Progression during Early Development of Channel Catfish (Ictalurus punctatus). Int. J. Mol. Sci. 2020, 21, 5535. https://doi.org/10.3390/ijms21155535
Ma X, Su B, Tian Y, Backenstose NJC, Ye Z, Moss AG, Duong T-Y, Wang X, Dunham RA. Deep Transcriptomic Analysis Reveals the Dynamic Developmental Progression during Early Development of Channel Catfish (Ictalurus punctatus). International Journal of Molecular Sciences. 2020; 21(15):5535. https://doi.org/10.3390/ijms21155535
Chicago/Turabian StyleMa, Xiaoli, Baofeng Su, Yuan Tian, Nathan J. C. Backenstose, Zhi Ye, Anthony G. Moss, Thuy-Yen Duong, Xu Wang, and Rex A. Dunham. 2020. "Deep Transcriptomic Analysis Reveals the Dynamic Developmental Progression during Early Development of Channel Catfish (Ictalurus punctatus)" International Journal of Molecular Sciences 21, no. 15: 5535. https://doi.org/10.3390/ijms21155535