You are currently viewing a new version of our website. To view the old version click .

Predictive Toxicology

This special issue belongs to the section “Environmental Sciences“.

Special Issue Information

Dear Colleagues,

The recent advances of toxicogenomics, high-throughput screening, stem cells, and image analysis are creating unique opportunities to improve our ability to predict risk in humans and the development of predictive toxicology. These modern biotechnologies are producing big toxicological data and require advanced artificial intelligence technologies to evaluate the potential for predicting toxicity. The application of conventional machine learning algorithms, such as logical regression, decision tree, and support vector machines, have largely enhanced our capability to recover useful knowledge from the increasing volume of toxicity data. A recent study reported by researchers from John Hopkins University, demonstrated that using artificial intelligent algorithms trained on chemical-safety, big data could be more predictive and outperform expensive animals studies on some toxicities. Notably, the development of deep learning techniques, with the help of advanced computer technologies (e.g., the use of graphical processing units (GPU)) and complicated neural network algorithms, have brought about breakthroughs in computer vision and pattern recognition, image and speech recognition, drug discovery, and toxicology. In several public scientific challenges, including the Merck-sponsored Kaggle competition in 2012 and the Tox21 Data Challenge in 2015, deep learning algorithms demonstrated a superior predictive performance to convenient machine learning algorithms.

In this Topical Collection, we focus on exploring the relationship between the toxicity of xenobiotics and their chemical structures, disturbed cellular, and molecular pathways by the application of artificial intelligent methods to improve the prediction of toxicity risk. In addition, we especially encourage submissions on applying deep learning techniques to process datasets from high-dimensional gene expression, image and high-throughput screening, and chemical structures.

You may choose our Joint Topical Collection in Toxics

Dr. Minjun Chen
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2500 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Predictive toxicology
  • Artificial intelligence
  • Big data
  • Machine learning
  • Deep learning
  • Toxicogenomics
  • High throughput screening
  • Image analysis
  • Chemical structure

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Published Papers

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Int. J. Environ. Res. Public Health - ISSN 1660-4601