Topic Editors

Mechanical and Automotive Discipline, School of Engineering, RMIT University, Melbourne, VIC 3083, Australia
Dr. Mahesh Suryawanshi
School of Photovoltaic and Renewable Energy Engineering (SPREE), UNSW Sydney, Sydney, NSW 2033, Australia

Hydrogen Energy Technologies, 3rd Edition

Abstract submission deadline
1 September 2026
Manuscript submission deadline
1 November 2026
Viewed by
948

Topic Information

Dear Colleagues,

Hydrogen is becoming a major contributor to decarbonising modern economies across the globe. This Topic is a continuation of the previous successful Topic “Hydrogen Energy Technologies”.

The scene is set for hydrogen to be a major player in decarbonising our modern economy. This is happening simultaneously as, with the increasing level of investment driven by the demand side, the hydrogen industry is positioning itself towards mass production in the coming years, which would significantly drive down costs even faster than we have witnessed in the past few decades. In line with all these developments, research and innovation in this field are expanding at a rapid rate, and we in the Energies journal are committed to facilitating the communication of high-quality studies in this field. This Topic focuses on the latest fundamentals and applied innovations in the field of hydrogen energy, covering the production, storage, distribution, and utilisation of hydrogen energy in various stationary and mobile applications. The Topic includes, but is not limited to:

  • Hydrogen production methods;
  • Hydrogen distribution;
  • Novel hydrogen storage solutions;
  • Large-scale hydrogen-based energy storage;
  • Integrated renewable hydrogen systems;
  • Fuel cells and electrolysers;
  • Hydrogen systems modelling and optimisation (including numerical and analytical modelling, computational chemistry, etc.);
  • Hydrogen system components and design (including MEA, catalyst layer, electrodes, GDL, membrane, bipolar plates, flow field, etc.);
  • Hydrogen system operation and optimisation;
  • Hydrogen for stationary and mobile applications;
  • Control solutions for hydrogen systems;
  • Hydrogen system/component manufacturing;
  • Advanced hydrogen materials;
  • Thermofluid modelling of hydrogen systems;
  • Hydrogen economy;
  • Hydrogen safety.

Prof. Dr. Bahman Shabani
Dr. Mahesh Suryawanshi
Topic Editors

Keywords

  • hydrogen energy
  • fuel cell
  • electrolyser
  • energy storage
  • hydrogen production
  • hydrogen utilisation
  • renewable hydrogen
  • hydrogen materials
  • hydrogen systems

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Catalysts
catalysts
4.0 7.6 2011 16.6 Days CHF 2200 Submit
Energies
energies
3.2 7.3 2008 16.2 Days CHF 2600 Submit
Fuels
fuels
2.8 - 2020 24.7 Days CHF 1200 Submit
Hydrogen
hydrogen
3.0 5.5 2020 17.6 Days CHF 1200 Submit
Nanoenergy Advances
nanoenergyadv
- 9.0 2021 33.9 Days CHF 1000 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (1 paper)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
19 pages, 2212 KiB  
Article
Impact of the Anode Serpentine Channel Depth on the Performance of a Methanol Electrolysis Cell
by Vladimir L. Meca, Elena Posada, Antonio Villalba-Herreros, Rafael d’Amore-Domenech, Teresa J. Leo and Óscar Santiago
Hydrogen 2025, 6(3), 51; https://doi.org/10.3390/hydrogen6030051 - 19 Jul 2025
Viewed by 610
Abstract
This work addresses for the first time the effect of anode serpentine channel depth on Methanol Electrolysis Cells (MECs) and Direct Methanol Fuel Cells (DMFCs) for improving performance of both devices. Anode plates with serpentine flow fields of 0.5 mm, 1.0 mm and [...] Read more.
This work addresses for the first time the effect of anode serpentine channel depth on Methanol Electrolysis Cells (MECs) and Direct Methanol Fuel Cells (DMFCs) for improving performance of both devices. Anode plates with serpentine flow fields of 0.5 mm, 1.0 mm and 1.5 mm depths are designed and tested in single-cells to compare their behaviour. Performance was evaluated through methanol crossover, polarization and power density curves. Results suggest shallower channels enhance mass transfer efficiency reducing MEC energy consumption for hydrogen production at 40 mA∙cm−2 by 4.2%, but increasing methanol crossover by 30.3%. The findings of this study indicate 1.0 mm is the best depth among those studied for a MEC with 16 cm2 of active area, while 0.5 mm is the best for a DMFC with the same area with an increase in peak power density of 14.2%. The difference in results for both devices is attributed to higher CO2 production in the MEC due to its higher current density operation. This increased CO2 production alters anode two-phase flow, partially hindering the methanol oxidation reaction with shallower channels. These findings underscore the critical role of channel depth in the efficiency of both MEC and DMFC single-cells. Full article
(This article belongs to the Topic Hydrogen Energy Technologies, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop