Tea Tree: Cultivation, Breeding and Their Processing Innovation

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Medicinals, Herbs, and Specialty Crops".

Deadline for manuscript submissions: closed (16 May 2025) | Viewed by 12777

Special Issue Editors


E-Mail Website
Guest Editor
Horticultural College, Hunan Agricultural University, Changsha 410128, China
Interests: catechins synthesis; transcriptional regulation; tea aroma

E-Mail Website
Guest Editor
Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
Interests: biosynthesis of tea secondary metabolites

E-Mail Website
Guest Editor
State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
Interests: tea; chemistry; flavor; fermentation; taste; polyphenols
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Horticultural College, Hunan Agricultural University, Changsha 410128, China
Interests: the role and biosynthesis of tea secondary metabolites
Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
Interests: tea aroma; tea processing; metabolomics; taste

E-Mail Website
Guest Editor
Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
Interests: theanine biosynthesis and metabolism; leaf color variation of tea plant

Special Issue Information

Dear Colleagues,

The purpose of this Special Issue, “Tea Tree: Cultivation, Breeding and Their Processing Innovation”, is to present innovative studies, approaches, and techniques that have been successful in cultivation and breeding as well as their processing. Tea chemistry relating to major and minor components, as well as their sensory and flavor aspects, will also be considered. Tea physiology (biochemistry, physiology, genetics, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, etc.) will also be considered.

Prof. Dr. Kunbo Wang
Prof. Dr. Jian Zhao
Prof. Dr. Liang Zhang
Dr. Ligui Xiong
Dr. Qin Li
Dr. Juan Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • tea plant
  • cultivation
  • breeding
  • tea processing
  • secondary metabolism
  • tea biochemistry
  • tea quality
  • tea flavor

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 22976 KiB  
Article
Functional Analysis of CsHsf10 in Drought Stress Response in Camellia sinensis
by Yuqi Luo, Chenyu Shao, Rong Xu, Shuqi Qiu, Qiulong Hu, Jiayi Guo, Yun Peng, Han Tang, Yueling Zhao, Jianan Huang, Zhonghua Liu and Chengwen Shen
Horticulturae 2025, 11(4), 373; https://doi.org/10.3390/horticulturae11040373 - 31 Mar 2025
Viewed by 367
Abstract
Heat shock transcription factor (Hsf) plays a crucial role in the signal transduction pathways of plants in response to drought stress. However, studies exploring the specific functions and mechanisms of action of the Hsf family in tea plants (Camellia sinensis L.) remain [...] Read more.
Heat shock transcription factor (Hsf) plays a crucial role in the signal transduction pathways of plants in response to drought stress. However, studies exploring the specific functions and mechanisms of action of the Hsf family in tea plants (Camellia sinensis L.) remain limited. In this study, we identified 31 members of the CsHsf family from the C. sinensis genome. CsHsf10 was determined to be a potential drought-resistant candidate gene by screening 10 highly expressed genes in mature leaves and confirming results through RT-qPCR. Correlation analysis indicates that CsHsf10 may enhance the drought resistance of tea plants by participating in the tea polyphenol synthesis pathway and regulating the expression of antioxidant enzyme genes. Furthermore, overexpression experiments in Arabidopsis and antisense oligonucleotide experiments in tea plants corroborated that CsHsf10 exerts a significant positive regulatory effect on drought resistance in tea plants. Yeast one-hybrid assays and dual luciferase reporter gene experiments demonstrated that CsHsf10 can directly target CsPOD17, significantly promoting its transcriptional expression. Additionally, we found that the expression of CsHsf10 contributes to the increased accumulation of catechin components in tea plants under drought stress. These findings suggest that, during the response of tea plants to drought stress, CsHsf10 not only enhances antioxidant capacity by regulating the activity of antioxidant enzymes but also optimizes the physiological state of tea plants by influencing the accumulation of secondary metabolites, thereby significantly improving their drought resistance. Full article
(This article belongs to the Special Issue Tea Tree: Cultivation, Breeding and Their Processing Innovation)
Show Figures

Figure 1

22 pages, 8450 KiB  
Article
The Dynamic Changes in Volatile Compounds During Wuyi Rock Tea (WRT) Processing: More than a Contribution to Aroma Quality
by Zi-Wei Zhou, Qing-Yang Wu, Yang Wu, Ting-Ting Deng, Xiao-Hui Chen, Shu-Ting Xiao, Chen-Xin Zhang, Yun Sun and Shi-Zhong Zheng
Horticulturae 2025, 11(2), 120; https://doi.org/10.3390/horticulturae11020120 - 22 Jan 2025
Cited by 1 | Viewed by 1008
Abstract
Wuyi Rock tea (WRT), originating from the northern region of Fujian province, has a good reputation for its distinctive Yan flavor and floral–fruity aroma. The aroma quality, an essential element of the Yan flavor, undergoes various changes during the manufacturing process of WRT. [...] Read more.
Wuyi Rock tea (WRT), originating from the northern region of Fujian province, has a good reputation for its distinctive Yan flavor and floral–fruity aroma. The aroma quality, an essential element of the Yan flavor, undergoes various changes during the manufacturing process of WRT. To enhance the understanding of the formation patterns of WRT aroma and its influence on the flavor quality of WRT, we utilized both manufactured WRT (Rougui tea) and primary tea as materials. Utilizing a sensory evaluation, detection of volatile compounds, and multivariate statistical analysis, we identified and characterized the distinctive volatile components present in WRT. The sensory evaluation and radar chart analysis revealed that the primary tea exhibited a strong and lasting aroma, along with a mellow taste and a prominent Yan flavor. Through gas chromatography time-of-flight mass spectrometry (GC-TOF MS), a total of 251 volatile compounds were identified. The odor activity value (OAV) was calculated to identify key aroma-active compounds in the primary tea. The results indicated that a total of 14 compounds had an OAV greater than 1.0, including (2-nitroethyl) benzene, indole, and geranylacetone. These compounds exhibited floral and fruity aroma attributes. They primarily formed and accumulated during the latter stages of WRT. Using a partial least squares discrimination analysis (PLS-DA) combined with a variable importance in projection (VIP) score greater than 1.0 as a criterion, a total of 89 compounds were identified. Furthermore, out of the selected compounds, 15 types, including geraniol, 1-nonanol, and 1-butyl-2-ethyl-cyclopropene, were found to exclusively exist during the enzymatic manufacturing stages, particularly during the intermediate and later phases of the turn-over process (the last-three-times turn-over treatments), exhibiting predominantly floral and sweet fragrances. In contrast, during the non-enzymatic stages, only four compounds, such as pentanoic acid and phenylmethyl ester, were detected, exhibiting a fruity aroma profile. These volatile compounds significantly influenced the quality attributes of the final tea product, resulting in strong and lasting characteristics, particularly marked by a pronounced floral and fruity aroma. This study revealed how the aroma quality in WRT is developed and pinpointed possible volatile compounds that react to post-harvest treatments, thereby offering valuable insights relating to the intelligent production strategies of WRT. Full article
(This article belongs to the Special Issue Tea Tree: Cultivation, Breeding and Their Processing Innovation)
Show Figures

Figure 1

14 pages, 11724 KiB  
Article
Transcriptomics Analysis Reveals Differences in Purine and Phenylpropanoid Biosynthesis Pathways Between Camellia sinensis var. Shuchazao and Camellia ptilophylla
by Waqar Khan, Peng Zheng, Binmei Sun and Shaoqun Liu
Horticulturae 2025, 11(1), 8; https://doi.org/10.3390/horticulturae11010008 - 26 Dec 2024
Cited by 1 | Viewed by 653
Abstract
Tea production and quality are largely determined by the many genetic and biochemical characteristics that occur in tea plant cultivars. Worldwide, tea is consumed for its pleasing and refreshing effects due to its caffeine content. The present study performed transcriptomics analyses of two [...] Read more.
Tea production and quality are largely determined by the many genetic and biochemical characteristics that occur in tea plant cultivars. Worldwide, tea is consumed for its pleasing and refreshing effects due to its caffeine content. The present study performed transcriptomics analyses of two tea species (Camellia sinensis var. Shuchazao (SCZ) and Camellia ptilophylla (CAF)) and identified diversity in the gene expression levels and major regulatory transcription factors (TFs) for the characterization of purine alkaloids and phenylpropanoid biosynthesis pathways. The RNA-seq analysis of two species (SCZ and CAF) revealed the differences in caffeine and catechins synthesis. In the purine alkaloid biosynthesis pathway, the S-adenosyl methionine (SAM) and adenosine monophosphate (AMP) pathway genes were significantly related to xanthosine synthesis in contrasting purine alkaloids among (Camellia sinensis var. Shuchazao (SCZ) and Camellia ptilophylla (CAF)). The significant expression of SAMS-5, PPAT-2, IMPDH-2, TCS-2, TCS-3, XMT-1, XMT-13, and XDH-4 in the xanthosine degradation pathway in CAF is attributed to higher theobromine content as compared to SCZ. Moreover, the transcription factors (TFs) AP2/ERF (20%), WRKY (12%), NAC (11%), and MYB (8%) were significantly correlated. The upregulated expression of caffeine synthesis genes in SCZ was correlated with MYB and AP2/ERF transcription factors. This study provides the basis for differences in the genetic mechanism in purine alkaloids, phenylpropanoid, and flavonoid biosynthesis pathways, which would be helpful in the development and selection of tea plant species with high or low caffeine concentrations. This study also provides a road map for future genetic improvement in tea species and cultivars. Full article
(This article belongs to the Special Issue Tea Tree: Cultivation, Breeding and Their Processing Innovation)
Show Figures

Figure 1

14 pages, 3741 KiB  
Article
Enhancing Soil Health and Tea Plant Quality Through Integrated Organic and Chemical Fertilization Strategies
by Pengyao Miao, Xiaomin Pang, Mengzhen Zhang, Weiting Cheng, Zewei Zhou, Yuanping Li, Haibin Wang, Xiaoli Jia, Jianghua Ye and Qi Zhang
Horticulturae 2024, 10(12), 1311; https://doi.org/10.3390/horticulturae10121311 - 9 Dec 2024
Cited by 1 | Viewed by 1301
Abstract
As the global demand for high-quality tea increases, adopting sustainable agricultural practices is crucial to maintaining environmental health and improving crop productivity. Employing organic fertilizers has the potential to boost agricultural output and improve soil health, as well as curb the spread of [...] Read more.
As the global demand for high-quality tea increases, adopting sustainable agricultural practices is crucial to maintaining environmental health and improving crop productivity. Employing organic fertilizers has the potential to boost agricultural output and improve soil health, as well as curb the spread of pests and diseases. The purpose of this survey was to determine the impact of a range of organic fertilizer mixtures on both tea plants and rhizosphere soil characteristics in tea plantations. This study investigated the response of Jin Guanyin tea (Camellia sinensis L.) plants to various organic fertilizer ratios: 2/3 chemical fertilizer + 1/3 organic fertilizer (JTC), 1/2 chemical fertilizer + 1/2 organic fertilizer (JHOC), 1/3 chemical fertilizer + 2/3 organic fertilizer (JTO), and organic fertilizer only (JOF), with chemical fertilizer alone (JCF) as the control. The experiment was conducted in Xingcun Town, Wuyishan, Fujian Province, China, on 13 October 2021. Key metrics measured included tea plant growth indicators, soil physicochemical properties, enzyme activities, and microbial functional diversity. Results show that JTC and JTO produce the largest leaf area and bud weight, significantly surpassing those in JCF. JCF demonstrated the longest new tip length and highest bud density, while JHOC achieved the highest chlorophyll content, significantly exceeding JCF. Soil analysis revealed that total nitrogen, available nitrogen, organic matter, and pH were highest in JOF, significantly overtaking JCF. Conversely, total phosphorus, available potassium, and available phosphorus levels were highest in JCF. JHOC also had the highest total potassium content compared to JCF. Soil enzyme activity assessments showed that polyphenol oxidase and urease activities peaked in JTC, significantly exceeding those in JCF. JHOC exhibited the highest acid phosphatase activity, while JTO exhibited the highest protease activity. Catalase activity was highest in JOF, both significantly surpassing JCF. Microbial functional diversity analysis indicated that combined organic fertilization improved soil microorganisms’ utilization of carbon sources, significantly enhancing the Shannon diversity index and evenness. Key carbon sources identified included α-cyclodextrin, D-galacturonic acid, and 4-hydroxy benzoic acid. Overall, JHOC emerged as the optimal fertilization strategy, yielding superior growth indicators, enhanced soil physicochemical properties, increased enzyme activity, and improved microbial functional diversity compared to JCF. This study has important value for guiding the rational application of fertilizers in tea gardens, improving the soil environment of tea gardens, enhancing the quality of tea leaves, and achieving sustainable tea production. Full article
(This article belongs to the Special Issue Tea Tree: Cultivation, Breeding and Their Processing Innovation)
Show Figures

Figure 1

17 pages, 8246 KiB  
Article
Genome-Wide Identification and Expression Analysis of Pseudo-Response Regulators (PRRs) in the Tea Plant Camellia sinensis (L.) O. Kuntze
by Lili Ye, Huaqian Xue, Nana Li, Meng Ye, Jianyan Huang, Xinchao Wang, Juan Wu and Changqing Ding
Horticulturae 2024, 10(12), 1294; https://doi.org/10.3390/horticulturae10121294 - 4 Dec 2024
Cited by 1 | Viewed by 943
Abstract
The circadian clock plays a vital role in facilitating plant adaptation to rhythmically changing environmental factors. Pseudo-response regulators (PRRs) are key components regulating the plant circadian clock and have been extensively characterized in model plants. However, the PRRs in the tea plant have [...] Read more.
The circadian clock plays a vital role in facilitating plant adaptation to rhythmically changing environmental factors. Pseudo-response regulators (PRRs) are key components regulating the plant circadian clock and have been extensively characterized in model plants. However, the PRRs in the tea plant have not been comprehensively studied. In this study, seven CsPRRs were cloned from the tea plant. Domain, phylogenetic evolution, gene structure, motifs, and cis-acting element analysis revealed their sequence characters and suggested that the first subgroup members, CsPRR1a, 1b, 5a, 5b, 7, and 37, may be responsible for circadian rhythm regulation and abiotic stress responses, while the second subgroup member, CsPRR2, may be involved in development and chloroplast function regulation. Most CsPRRs showed relatively higher expression in flowers, implying their potential roles in photoperiod-regulated flower induction. Moreover, rhythmic expression of CsPRR7, 5b, 5a, 37, 1b, and 1a was observed under long-day conditions in a sequential manner. Additionally, CsPRRs were differently induced/inhibited by cold, heat, and drought stresses in tissue-specific and photoperiod-related manners. A stronger cold induction of CsPRRs was observed under long-day conditions than under short-day conditions. And, among the two tested tissues, changes in the expression of CsPRRs caused by various stresses were more obvious in young shoots. Studies using a floriferous cultivar (FDDB) and an oliganthous cultivar (PYTZ) implied that CsPRRs also played crucial roles in tea-plant flower induction. This study presents the first comprehensive analysis of CsPRRs in the tea plant, providing vital information for further elucidation of CsPRR functions. It also suggests that tissue type and photoperiod conditions should be taken into consideration when conducting gene function studies in the tea plant. Full article
(This article belongs to the Special Issue Tea Tree: Cultivation, Breeding and Their Processing Innovation)
Show Figures

Figure 1

17 pages, 6741 KiB  
Article
Comprehensive Assessment of the Correlation Between Ancient Tea Garden Soil Chemical Properties and Tea Quality
by Houqiao Wang, Wenxia Yuan, Qiaomei Wang, Yuxin Xia, Wang Chun, Haoran Li, Guochen Peng, Wei Huang and Baijuan Wang
Horticulturae 2024, 10(11), 1207; https://doi.org/10.3390/horticulturae10111207 - 15 Nov 2024
Cited by 1 | Viewed by 931
Abstract
Understanding the correlation between soil chemical properties and tea quality is essential for the comprehensive management of ancient tea gardens. However, the specific links between these factors in ancient tea gardens remain underexplored. This study analyzes the soil chemical properties of four distinct [...] Read more.
Understanding the correlation between soil chemical properties and tea quality is essential for the comprehensive management of ancient tea gardens. However, the specific links between these factors in ancient tea gardens remain underexplored. This study analyzes the soil chemical properties of four distinct research regions in Nanhua County to explore their effects on key chemical components in ancient tea garden teas, providing a scientific basis for improving the quality of ancient tea garden teas through soil management. Employing high performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICP-MS), the chemical components of tea and the chemical properties of the soil were meticulously quantified. Following these measurements, the integrated fertility index (IFI) and the potential ecological risk index (PERI) were evaluated and correlation analysis was conducted. The results revealed that ancient tea garden tea quality is closely linked to soil chemical properties. Soil’s total nitrogen (TN), total sulfur (TS), and available potassium (AK) negatively correlate with tea’s catechin gallate (CG) component and AK also with polyphenols. Most other soil properties show positive correlations with tea components. The research also evaluated soil heavy metals’ IFI and PERI. IFI varied significantly among regions. Hg’s high pollution index indicates ecological risks; Cd in Xiaochun (XC) region poses a moderate risk. PERI suggests moderate risk for XC and Banpo (BP), with other areas classified as low risk. Implementing reasonable fertilization and soil amelioration measures to enhance soil fertility and ensure adequate supply of key nutrients will improve the quality of ancient tea gardens. At the same time, soil management measures should effectively control heavy metal pollution to ensure the quality and safety of tea products. Insights from this study are crucial for optimizing soil management in ancient tea gardens, potentially improving tea quality and sustainability. Full article
(This article belongs to the Special Issue Tea Tree: Cultivation, Breeding and Their Processing Innovation)
Show Figures

Figure 1

18 pages, 3026 KiB  
Article
Comparison of Different Grades of Innovative Tanyang Congou Black Tea (Minkehong) Based on Metabolomics and Sensory Evaluation
by Zi-Wei Zhou, Qing-Yang Wu, Li-Qin Chen, Shu-Ling Ruan, Zi-Yu Yang, Yun Sun and Reheman Aikebaier
Horticulturae 2024, 10(4), 374; https://doi.org/10.3390/horticulturae10040374 - 8 Apr 2024
Cited by 6 | Viewed by 1771
Abstract
Innovative Tangyang Congou black tea, also known as Minkehong black tea (MKH), is of high quality and hence has gained a reputation on the market. In this study, standard samples of MKH were used as the research material, and the results of sensory [...] Read more.
Innovative Tangyang Congou black tea, also known as Minkehong black tea (MKH), is of high quality and hence has gained a reputation on the market. In this study, standard samples of MKH were used as the research material, and the results of sensory evaluation showed that the overall quality of MKH decreased along with the downgrading. The radar chart showed a strong association between higher grades and specific aroma and taste character. Based on the detection of ultra-performance liquid chromatography–mass spectrometry (UPLC–MS) and related analysis, the content of both the ester-type catechins and non-ester catechins decreased along with the downgrading, and the details of their change trends were revealed. The content and dynamic changes in caffeine were also investigated. A total of 19 kinds of amino acids (AAs) were clustered; among them, 4 kinds of AAs, namely, Thr, Leu, Asp, and Ile, significantly contributed to the taste of the tea. Notably, the content of Thr had the highest correlation with the grade of MKH, and the correlation coefficient was 0.991 (p < 0.01). According to gas chromatography–mass spectrometry (GC–MS) detection and analysis, a total of 861 kinds of volatile compounds were detected, the aroma-active compounds in different grades were selected, and an aroma wheel of MKH was constructed. Our results found that non-volatile and volatile compounds not only contribute to defining the level of MKH standard samples but also provide a chemical basis for the measurement of flavour and quality of MKH. Full article
(This article belongs to the Special Issue Tea Tree: Cultivation, Breeding and Their Processing Innovation)
Show Figures

Figure 1

16 pages, 3463 KiB  
Article
Genome-Wide Identification of Selenium-Responsive MicroRNAs in Tea Plant (Camellia sinensis L. O. Kuntze)
by Dan Cao, Juan Li, Linlong Ma, Yanli Liu, Jianan Huang and Xiaofang Jin
Horticulturae 2023, 9(12), 1278; https://doi.org/10.3390/horticulturae9121278 - 28 Nov 2023
Cited by 3 | Viewed by 1626
Abstract
Anadequate selenium (Se) intake can enhance human immunity and prevent diseases development. About one billion people in the world have varying degrees of Se deficiency in the world. Organic Se from tea infusion is the most easily absorbed and utilized Se form by [...] Read more.
Anadequate selenium (Se) intake can enhance human immunity and prevent diseases development. About one billion people in the world have varying degrees of Se deficiency in the world. Organic Se from tea infusion is the most easily absorbed and utilized Se form by the human body. Therefore the production of tea plants rich in Se is an effective way to increase Se dietary intake, but there are few studies on the involvement and functions of miRNAs in the responses of tea plants after Se treatment. MicroRNAs (miRNAs) are endogenous (non-coding) single-stranded RNAs that play crucial roles in regulating plant nutrient element acquisition and accumulation. Physiological analysis discovered that the total Se content in tea plant roots markedly increased under 0.05 mmol·L−1 selenite treatment, with no toxicity symptoms in the leaves and roots. To screen the miRNAs responsive to Se treatment in tea plants, miRNA libraries were constructed from the tea cultivar “Echa 1”. Using high-throughput sequencing, 455 known miRNAs and 203 novel miRNAs were identified in this study. In total, 13 miRNAs were selected that were differentially expressed in tea plants’ roots under 0.05 mmol·L−1 selenite treatments. Gene Ontology enrichment analysis revealed that the target genes of the differentially expressed miRNAs mainly belonged to the metabolic process, membrane, and catalytic activity ontologies. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis suggested that beta-alanine, taurine, hypotaurine, and sulfur metabolism were the most enriched pathways among the differentially expressed miRNAs, implying their involvement in Se accumulation and tolerance in tea plants. Further characterization of the data revealed that the number of novel miRNAs was comparable to that of known miRNAs, indicating that novel miRNAs significantly contributed to the regulation of Se accumulation in tea plant roots. Thisstudy lays the foundation for further research on the regulatory mechanisms underlying Se accumulation and tolerance in tea plants, providing targets to molecular breeding strategies for improving tea nutritional properties. Full article
(This article belongs to the Special Issue Tea Tree: Cultivation, Breeding and Their Processing Innovation)
Show Figures

Figure 1

15 pages, 4896 KiB  
Article
The WRKY Transcription Factor CsWRKY70 Regulates EGCG Biosynthesis by Affecting CsLAR and CsUGT84A Expressions in Tea Leaves (Camellia sinensis)
by Xiaofeng Song, Xiangxiang Huang, Qin Li, Haiyan Lin, Silei Bai, Mingzhi Zhu, Juan Li and Kunbo Wang
Horticulturae 2023, 9(1), 120; https://doi.org/10.3390/horticulturae9010120 - 16 Jan 2023
Cited by 7 | Viewed by 2522
Abstract
Epigallocatechin gallate (EGCG) is an important contributor to bitterness and astringency in summer tea leaves; however, the transcriptional regulatory mechanisms of EGCG biosynthesis remain unclear. In this study, EGCG content was significantly decreased after foliar spraying with nano-Se fertilizers in tea leaves. A [...] Read more.
Epigallocatechin gallate (EGCG) is an important contributor to bitterness and astringency in summer tea leaves; however, the transcriptional regulatory mechanisms of EGCG biosynthesis remain unclear. In this study, EGCG content was significantly decreased after foliar spraying with nano-Se fertilizers in tea leaves. A WRKY transcription factor (TF), CsWRKY70, was found to be positively related to EGCG content. The open reading frame of CsWRKY70 was 891 bp encoding 296 amino acids. CsWRKY70 is localized to the nucleus and has transcriptional activation activity. The electrophoretic mobility shift assay indicated that CsWRKY70 can directly bind to the promoters of CsLAR and CsUGT84A containing W-box (5′-C/TTGACT/C-3′) sequences. Dual-luciferase reporter experiment verified that CsWRKY70 activated CsLAR and CsUGT84A expressions in tobacco leaves. In summary, these results demonstrated that CsWRKY70 may reduce EGCG biosynthesis by inhibiting the CsLAR and CsUGT84A expressions under nano-Se treatment. Our findings provide new insight into the regulatory mechanism of WRKY TFs involved in catechin biosynthesis and offer a theoretical basis for breeding low or high EGCG content tea cultivars. Full article
(This article belongs to the Special Issue Tea Tree: Cultivation, Breeding and Their Processing Innovation)
Show Figures

Figure 1

Back to TopTop