Functional Analysis of CsHsf10 in Drought Stress Response in Camellia sinensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Physical and Chemical Analysis of Hsf Genes in Camellia sinensis
2.2. Phylogenetic Analysis of C. sinensis, A. thaliana, and Populus Trichocarpa Hsf Genes
2.3. Sequence, Conserved Motifs, and Gene Structure Analysis
2.4. Gene Duplication and Collinearity Analysis of Tea Plant Hsf Gene
2.5. Identification of Cis-Regulatory Elements in the Promoter Regions of CsHsf Genes
2.6. Plant Materials and Drought Treatment
2.7. Determination of Chlorophyll Fluorescence Parameters and Relative Conductivity
2.8. Determination of Enzyme Activity, MDA Content, and Physiological Indices of Tea Plants
2.9. RNA Extraction and Real-Time Fluorescence Quantitative PCR (RT-qPCR)
2.10. Homologous Sequence Alignment, Protein-Protein Interaction Network Prediction, and Subcellular Localization of CsHsf10
2.11. Arabidopsis thaliana Overexpression Experiment
2.12. Antisense Oligonucleotide (AsODNs) Experiment
2.13. LC-MS/MS Chromatographic Conditions
2.14. Yeast One-Hybrid (Y1H) Assay
2.15. Dual-Luciferase Reporter Assay (LUC)
2.16. Statistical Analysis
3. Results
3.1. Physiological Changes of Tea Plant Under Drought Stress
3.2. Relative Expression Levels and Correlation Analysis of the CsHsf Gene Family Under Drought Stress
3.3. Bioinformatics Analysis and Subcellular Localization of CsHsf10
3.4. Effects of Overexpression of CsHsf10 Gene and Antisense Oligonucleotides on Drought Resistance
3.5. CsHsf10 Positively Regulates CsPOD17 to Drought Response Mechanism
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andrasi, N.; Pettko-Szandtner, A.; Szabados, L. Diversity of plant heat shock factors: Regulation, interactions, and functions. J. Exp. Bot. 2021, 72, 1558–1575. [Google Scholar] [PubMed]
- Von Koskull-Döring, P.; Scharf, K.D.; Nover, L. The diversity of plant heat stress transcription factors. Trends Plant Sci. 2007, 12, 452–457. [Google Scholar]
- Harrison, C.J.; Bohm, A.A.; Nelson, H.C. Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 1994, 263, 224–227. [Google Scholar] [PubMed]
- Döring, P.; Treuter, E.; Kistner, C.; Lyck, R.; Chen, A.; Nover, L. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell 2000, 12, 265–278. [Google Scholar] [CrossRef]
- Czarnecka-Verner, E.; Pan, S.; Salem, T.; Gurley, W.B. Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol. Biol. 2004, 56, 57–75. [Google Scholar] [PubMed]
- Xue, G.P.; Sadat, S.; Drenth, J.; McIntyre, C.L. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J. Exp. Bot. 2014, 65, 539–557. [Google Scholar]
- Zhuang, L.; Cao, W.; Wang, J.; Yu, J.; Yang, Z.; Huang, B. Characterization and functional analysis of FaHsfC1b from Festuca arundinacea conferring heat tolerance in Arabidopsis. Int. J. Mol. Sci. 2018, 19, 2702. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Ding, L.; Wang, C.; Teng, R.; Xu, S.; Cao, X.; Teng, N. Lily LlHSFC2 coordinates with HSFAs to balance heat stress response and improve thermotolerance. New Phytol. 2024, 241, 2124–2142. [Google Scholar]
- Gao, L.; Pan, L.; Shi, Y.; Zeng, R.; Li, Z.; Zhang, X.; Zhao, X.; Gong, X.; Huang, W.; Yang, X.; et al. Genetic variation in a heat shock transcription factor modulates cold tolerance in maize. Mol. Plant. 2024, 17, 1423–1438. [Google Scholar]
- Bian, X.H.; Li, W.; Niu, C.F.; Wei, W.; Hu, Y.; Han, J.Q.; Lu, X.; Tao, J.J.; Jin, M.; Qin, H.; et al. A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis. New Phytol. 2020, 225, 268–283. [Google Scholar]
- Wang, Y.; Cai, S.; Yin, L.; Shi, K.; Xia, X.; Zhou, Y.; Yu, J.; Zhou, J. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. Autophagy 2015, 11, 2033–2047. [Google Scholar] [PubMed]
- Bechtold, U.; Albihlal, W.S.; Lawson, T.; Fryer, M.J.; Sparrow, P.A.C.; Richard, F.; Persad, R.; Bowden, L.; Hickman, R.; Martin, C.; et al. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection. J. Exp. Bot. 2013, 64, 3467–3481. [Google Scholar]
- Li, P.S.; Yu, T.F.; He, G.H.; Chen, M.; Zhou, Y.B.; Chai, S.C.; Xu, Z.S.; Ma, Y.Z. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genom. 2014, 15, 1009. [Google Scholar]
- Ma, H.; Wang, C.; Yang, B.; Cheng, H.; Wang, Z.; Mijiti, A.; Ren, C.; Qu, G.; Zhang, H.; Ma, L. CarHSFB2, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer arietinum L.). Plant Mol. Biol. Rep. 2016, 34, 1–14. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Chai, G.; Zhang, D.; Fang, Y.; Deng, K.; Aslam, M.; Niu, X.; Zhang, W.; Qin, Y.; et al. Identification of passion fruit HSF gene family and the functional analysis of PeHSF-C1a in response to heat and osmotic stress. Plant Physiol. Biochem. 2023, 200, 107800. [Google Scholar]
- Zhu, M.D.; Zhang, M.; Gao, D.J.; Zhou, K.; Tang, S.J.; Zhou, B.; Lv, Y.M. Rice OsHSFA3 gene improves drought tolerance by modulating polyamine biosynthesis depending on abscisic acid and ROS levels. Int. J. Mol. Sci. 2020, 21, 1857. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Shen, J.; Yu, H.; Huang, X.; Deng, X.; Hu, Z.; Amee, M.; Chen, L.; Cao, L. Genome-wide identification and functional analyses of heat shock transcription factors involved in heat and drought stresses in ryegrass. Environ. Exp. Bot. 2022, 201, 104968. [Google Scholar]
- Wang, N.; Liu, W.; Yu, L.; Guo, Z.; Chen, Z.; Jiang, S.; Xu, H.; Fang, H.; Wang, Y.; Zhang, Z.; et al. HEAT SHOCK FACTOR A8a modulates flavonoid synthesis and drought tolerance. Plant Physiol. 2020, 184, 1273–1290. [Google Scholar]
- Zhang, F.; Pan, Z.; Han, C.; Dong, H.; Lin, L.; Qiao, Q.; Zhao, K.; Wu, J.; Tao, S.; Zhang, S.; et al. Pyrus betulaefolia ERF3 interacts with HsfC1a to coordinately regulate aquaporin PIP1;4 and NCED4 for drought tolerance. Hortic. Res. 2024, 11, uhae090. [Google Scholar]
- Ye, L.; Xue, H.; Li, N.; Ye, M.; Huang, J.; Wang, X.; Wu, J.; Ding, C. Genome-wide identification and expression analysis of pseudo-response regulators (PRRs) in the tea plant Camellia sinensis (L.) O. Kuntze. Horticulturae 2024, 10, 1294. [Google Scholar] [CrossRef]
- Xue, H.; Ren, X.; Li, S.; Wu, X.; Cheng, H.; Xu, B.; Gu, B.; Yang, G.; Peng, C.; Ge, Y.; et al. Assessment of private economic benefits and positive environmental externalities of tea plantation in China. Environ. Monit. Assess. 2013, 185, 8501–8516. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Lei, Y.; Duan, J.; Kang, Y.; Luo, Y.; Ding, D.; Chen, Y.; Li, S. Investigation of heat stress responses and adaptation mechanisms by integrative metabolome and transcriptome analysis in tea plants (Camellia sinensis). Sci. Rep. 2024, 14, 10023. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, T.; Wan, S.; Zhang, Y.; Yang, J.; Yu, Y.; Wang, W. Genome-wide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis). Int. J. Mol. Sci. 2018, 19, 2633. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhu, X.; Hou, M.; Luo, W.; Jiang, Y.; Yu, Y.; Wang, J.; Yuan, H.; Huang, X.; Hua, J. Effects of low-temperature stress on cold resistance biochemical characteristics of Dali and Siqiu tea seedlings. Horticulturae 2024, 10, 823. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, P.; Song, X.; Ma, Y.; Fan, L.; Xie, M.; Song, Z.; Zhang, X.; Ma, H. Molecular and physiological responses of toona ciliata to simulated drought stress. Horticulturae 2024, 10, 1029. [Google Scholar] [CrossRef]
- Baek, S.G.; Shin, J.W.; Nam, J.I.; Seo, J.M.; Kim, J.M.; Woo, S.Y. Drought and salinity stresses response in three korean native herbaceous plants and their suitability as garden plants. Horticulturae 2024, 10, 1225. [Google Scholar] [CrossRef]
- Hasan, R.; Islam, A.F.M.S.; Maleque, M.A.; Islam, M.S.; Rahman, M.M. Effect of drought stress on leaf productivity and liquor quality of tea: A review. Asian J. Soil Sci. Plant Nutr. 2023, 9, 1–10. [Google Scholar] [CrossRef]
- Liu, S.C.; Jin, J.Q.; Ma, J.Q.; Yao, M.Z.; Ma, C.L.; Li, C.F.; Ding, Z.T.; Chen, L. Transcriptomic analysis of tea plant responding to drought stress and recovery. PLoS ONE. 2016, 11, e0147306. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, W.; Ni, D.; Wang, M.; Guo, G. Genome-wide characterization of tea plant (Camellia sinensis) Hsf transcription factor family and role of CsHsfA2 in heat tolerance. BMC Plant Biol. 2020, 20, 224. [Google Scholar] [CrossRef]
- Seth, R.; Maritim, T.K.; Parmar, R.; Sharma, R.K. Underpinning the molecular programming attributing heat stress associated thermotolerance in tea (Camellia sinensis (L.) O. Kuntze). Hort. Res. 2021, 8, 99. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, C.; Zhou, Z.; Xu, L.; Lai, Z. Physiological and transcriptome analyses reveal the protective effect of exogenous trehalose in response to heat stress in tea plant (Camellia sinensis). Plants 2024, 13, 1339. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; He, Y.; Lang, Z.; Zhao, Y.; Tao, H.; Li, Q.; Hong, G. The CsHSFA-CsJAZ6 module-mediated high temperature regulates flavonoid metabolism in Camellia sinensis. Plant Cell Environ. 2023, 46, 2401–2418. [Google Scholar] [PubMed]
- Li, G.; Shi, X.; Lin, Q.; Lv, M.; Chen, J.; Wen, Y.; Feng, Z.; Azam, S.M.; Cheng, Y.; Wang, S.; et al. Genome-wide identification and expression analysis of heat shock transcription factors in Camellia sinensis under abiotic stress. Plants 2025, 14, 697. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant. 2023, 16, 1733–1742. [Google Scholar] [PubMed]
- Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar]
- Hubel, A.; Lee, J.H.; Wu, C.; Schoffl, F. Arabidopsis heat shock factor is constitutively active in Drosophila and human cells. Mol. Gen. Genet. 1995, 248, 136–141. [Google Scholar] [CrossRef]
- Zhao, K.; Dang, H.; Zhou, L.; Hu, J.; Jin, X.; Han, Y.; Wang, S. Genome-wide identification and expression analysis of the HSF gene family in poplar. Forests 2023, 14, 510. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Drozdetskiy, A.; Cole, C.; Procter, J.; Barton, G.J. JPred4: A protein secondary structure prediction server. Nucleic Acids Res. 2015, 43, W389–W394. [Google Scholar]
- KB, N. GeneDoc: Analysis and visualization of genetic variation. EMBnet News. 1997, 4, 1–4. [Google Scholar]
- Lescot, M.; Dehais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouze, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [PubMed]
- Zhang, C.; He, Q.; Wang, M.; Gao, X.; Chen, J.; Shen, C. Exogenous indole acetic acid alleviates Cd toxicity in tea (Camellia sinensis). Ecotoxicol. Environ. Saf. 2020, 190, 110090. [Google Scholar] [PubMed]
- Shao, C.; Chen, J.; Lv, Z.; Gao, X.; Guo, S.; Xu, R.; Deng, Z.; Yao, S.; Chen, Z.; Kang, Y.; et al. Staged and repeated drought-induced regulation of phenylpropanoid synthesis confers tolerance to a water deficit environment in Camellia sinensis. Ind. Crops Prod. 2023, 201, 116843. [Google Scholar]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT-Food Sci. Technol. 2021, 150, 111932. [Google Scholar]
- Shao, C.; Deng, Z.; Liu, J.; Li, Y.; Zhang, C.; Yao, S.; Zuo, H.; Shi, Y.; Yuan, S.; Qin, L.; et al. Effects of preharvest shading on dynamic changes in metabolites, gene expression, and enzyme activity of three tea types during processing. J. Agric. Food Chem. 2022, 70, 14544–14558. [Google Scholar]
- Zhou, M.; Zheng, S.; Liu, R.; Lu, J.; Lu, L.; Zhang, C.; Liu, Z.; Luo, C.; Zhang, L.; Yant, L.; et al. Genome-wide identification, phylogenetic and expression analysis of the heat shock transcription factor family in bread wheat (Triticum aestivum L.). BMC Genom. 2019, 20, 505. [Google Scholar]
- Liu, G.; Chai, F.; Wang, Y.; Jiang, J.; Duan, W.; Wang, Y.; Wang, F.; Li, S.; Wang, L. Genome-wide Identification and classification of HSF family in grape, and their transcriptional analysis under heat acclimation and heat stress. Hortic. Plant J. 2018, 4, 133–143. [Google Scholar]
- Wan, X.; Yang, J.; Guo, C.; Bao, M.; Zhang, J. Genome-wide identification and classification of the Hsf and sHsp gene families in Prunus mume, and transcriptional analysis under heat stress. PeerJ 2019, 7, e7312. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Yang, F.; Liu, C.Y.; Zhao, Y.Q.; Lu, X.J.; Ge, J.; Zhang, B.W.; Li, M.Q.; Yang, Y.; Fan, J.D. Genome-wide analysis of the HSF family in Allium sativum L. and AsHSFB1 overexpression in Arabidopsis under heat stress. BMC Genom. 2024, 25, 1072. [Google Scholar] [CrossRef]
- Deng, C.; Chen, Y.; Wei, W.; Chen, X.; Jiang, J. Genome-wide identification of heat shock transcription factor family and key members response analysis to heat stress in loquat. Horticulturae 2024, 10, 1195. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, F.; Ma, Y.; Zhang, T.; Sun, P.; Lan, M.; Li, F.; Fang, W. An ancient whole-genome duplication event and its contribution to flavor compounds in the tea plant (Camellia sinensis). Hortic. Res. 2021, 8, 176. [Google Scholar] [CrossRef] [PubMed]
- Scharf, K.D.; Berberich, T.; Ebersberger, I.; Nover, L. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. BBA-Gene Regul. Mech. 2012, 1819, 104–119. [Google Scholar] [CrossRef]
- Dossa, K.; Diouf, D.; Cisse, N. Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Front. Plant Sci. 2016, 7, 1522. [Google Scholar]
- Tashi, G.; Zhan, H.; Xing, G.; Chang, X.; Zhang, H.; Nie, X.; Ji, W. Genome-wide identification and expression analysis of heat shock transcription factor family in Chenopodium quinoa Willd. Agronomy 2018, 8, 103. [Google Scholar] [CrossRef]
- Peteranderl, R.; Rabenstein, M.; Shin, Y.K.; Liu, C.W.; Wemmer, D.E.; King, D.S.; Nelson, H.C. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor. Biochemistry 1999, 38, 3559–3569. [Google Scholar] [CrossRef]
- Schramm, F.; Larkindale, J.; Kiehlmann, E.; Ganguli, A.; Englich, G.; Vierling, E.; von Koskull-Doering, P. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 2008, 53, 264–274. [Google Scholar]
Compound | Normal Growth | Drought 24 h | ||
---|---|---|---|---|
CK | AsODN-CsHsf10 | CK | AsODN-CsHsf10 | |
Fv/Fm | 0.733 ± 0.0.252 a | 0.733 ± 0.012 a | 0.630 ± 0.017 b | 0.427 ± 0.045 c |
MDA (nmol/g FW) | 13.833 ± 0.351 c | 14.167 ± 0.115 c | 15.600 ± 0.265 b | 18.067 ± 0.451 a |
DL-C | 7.300 ± 0.200 b | 7.333 ± 0.115 b | 8.267 ± 0.208 a | 7.433 ± 0.321 b |
EC | 12.533 ± 0.251 c | 12.300 ± 0.346 bc | 14.133 ± 0.058 a | 12.833 ± 0.252 b |
EGC | 21.400 ± 0.100 c | 21.433 ± 0.306 c | 23.967 ± 0.416 a | 22.067 ± 0.252 b |
ECG | 17.300 ± 0.265 c | 17.167 ± 0.351 c | 19.467 ± 0.252 a | 18.067 ± 0.153 b |
GCG | 8.333 ± 0.153 b | 8.300 ± 0.436 b | 9.733 ± 0.115 a | 8.767 ± 0.153 b |
EGCG | 51.133 ± 0.0.503 c | 51.500 ± 0.0.794 bc | 56.200 ± 0.600 a | 52.600 ± 0.721 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Shao, C.; Xu, R.; Qiu, S.; Hu, Q.; Guo, J.; Peng, Y.; Tang, H.; Zhao, Y.; Huang, J.; et al. Functional Analysis of CsHsf10 in Drought Stress Response in Camellia sinensis. Horticulturae 2025, 11, 373. https://doi.org/10.3390/horticulturae11040373
Luo Y, Shao C, Xu R, Qiu S, Hu Q, Guo J, Peng Y, Tang H, Zhao Y, Huang J, et al. Functional Analysis of CsHsf10 in Drought Stress Response in Camellia sinensis. Horticulturae. 2025; 11(4):373. https://doi.org/10.3390/horticulturae11040373
Chicago/Turabian StyleLuo, Yuqi, Chenyu Shao, Rong Xu, Shuqi Qiu, Qiulong Hu, Jiayi Guo, Yun Peng, Han Tang, Yueling Zhao, Jianan Huang, and et al. 2025. "Functional Analysis of CsHsf10 in Drought Stress Response in Camellia sinensis" Horticulturae 11, no. 4: 373. https://doi.org/10.3390/horticulturae11040373
APA StyleLuo, Y., Shao, C., Xu, R., Qiu, S., Hu, Q., Guo, J., Peng, Y., Tang, H., Zhao, Y., Huang, J., Liu, Z., & Shen, C. (2025). Functional Analysis of CsHsf10 in Drought Stress Response in Camellia sinensis. Horticulturae, 11(4), 373. https://doi.org/10.3390/horticulturae11040373