- Article
AutoML-Based Prediction of Unconfined Compressive Strength of Stabilized Soils: A Multi-Dataset Evaluation on Worldwide Experimental Data
- Romulo Murucci Oliveira,
- Deivid Campos and
- Katia Vanessa Bicalho
- + 4 authors
Unconfined Compressive Strength (UCS) of stabilized soils is commonly used for evaluating the effectiveness of soil improvement techniques. Achieving target UCS values through conventional trial-and-error approaches requires extensive laboratory experiments, which are time-consuming and resource-intensive. Automated Machine Learning (AutoML) frameworks offer a promising alternative by enabling automated, reproducible, and accessible predictive modeling of UCS values from more readily obtainable index and physical soil and stabilizer properties, reducing the reliance on experimental testing and empirical relationships, and allowing systematic exploration of multiple models and configurations. This study evaluates the predictive performance of five state-of-the-art AutoML frameworks (i.e., AutoGluon, AutoKeras, FLAML, H2O, and TPOT) using analyses of results from 10 experimental datasets comprising 2083 samples from laboratory experiments spanning diverse soil types, stabilizers, and experimental conditions across many countries worldwide. Comparative analyses revealed that FLAML achieved the highest overall performance (average PI score of 0.7848), whereas AutoKeras exhibited lower accuracy on complex datasets; AutoGluon , H2O and TPOT also demonstrated strong predictive capabilities, with performance varying with dataset characteristics. Despite the promising potential of AutoML, prior research has shown that fully automated frameworks have limited applicability to UCS prediction, highlighting a gap in end-to-end pipeline automation. The findings provide practical guidance for selecting AutoML tools based on dataset characteristics and research objectives, and suggest avenues for future studies, including expanding the range of AutoML frameworks and integrating interpretability techniques, such as feature importance analysis, to deepen understanding of soil–stabilizer interactions. Overall, the results indicate that AutoML frameworks can effectively accelerate UCS prediction, reduce laboratory workload, and support data-driven decision-making in geotechnical engineering.
18 December 2025







