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Abstract

Owing to the high volatility, non-stationarity, and complexity of financial time-series data,
stock market trend prediction remains a crucial but difficult endeavor. To address this, we
present a novel Multi-Perspective Fused Attention model (SGR-Net) that amalgamates
Random, Global, and Sparse Attention mechanisms to improve stock trend forecasting
accuracy and generalization capability. The proposed Fused Attention model (SGR-Net)
is trained on a rich feature space consisting of thirteen widely used technical indicators
derived from raw stock index prices to effectively classify stock index trends as either
uptrends or downtrends. Across nine global stock indices—DJUS, NYSE AMEX, BSE,
DAX, NASDAQ), Nikkei, S&P 500, Shanghai Stock Exchange, and NIFTY 50—we evaluated
the proposed model and compared it against baseline deep learning techniques, which
include LSTM, GRU, Vanilla Attention, and Self-Attention. Experimental results across
nine global stock index datasets show that the Fused Attention model produces the highest
accuracy of 94.36% and AUC of 0.9888. Furthermore, even at lower epochs of training,
i.e., 20 epochs, the proposed Fused Attention model produces faster convergence and better
generalization, yielding an AUC of 0.9265, compared with 0.9179 for Self-Attention, on
the DJUS index. The proposed model also demonstrates competitive training time and
noteworthy performance on all nine stock indices. This is due to the incorporation of Sparse
Attention, which lowers computation time to 57.62 s, only slightly more than the 54.22 s
required for the Self-Attention model on the Nikkei 225 index. Additionally, the model
incorporates Global Attention, which captures long-term dependencies in time-series data,
and Random Attention, which addresses the problem of overfitting. Overall, this study
presents a robust and reliable model that can help individuals, research communities, and
investors identify profitable stocks across diverse global markets.

Keywords: stock market trend prediction; sparse attention; global attention; random
attention

1. Introduction

Given the very unpredictable and non-stationary character of financial data [1], fore-
casting stock market trends is a vital but difficult chore. Although they have been exten-
sively applied, traditional statistical models such as Autoregressive Integrated Moving
Average (ARIMA) [2,3] and Generalized Autoregressive Conditional Heteroskedasticity
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(GARCH) frequently miss intricate temporal correlations and nonlinear patterns found
in stock price fluctuations. Deep learning models, especially recurrent neural networks
(RNNs), including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU),
have shown great potential in recent years in managing sequential financial data by learn-
ing long-term dependencies [4]. However, these models still struggle to effectively capture
significant market changes and trends.

Deep learning models have been coupled with attention processes meant to increase
feature selection and sequence learning to raise forecasting accuracy [5-7]. For many
natural language processing and time-series forecasting applications, standard attention
methods, including Vanilla Attention and Self-Attention, have proven successful. In the
context of stock market prediction, nevertheless, they frequently fail to balance short-term
volatility with long-term dependency, thus producing less-than-ideal results. We present
a Fusion Attention Model using a linear fusion approach to combine Sparse Attention,
Random Attention, and Global Attention, thus addressing these difficulties and improving
predictive performance.

1.1. Contributions
This study provides the following important contributions:

*  Propose a novel Multi-Perspective Fused Attention model: We developed a Multi-
Perspective Fused Attention-based deep learning model (SGR-Net) that amalgamates
the strengths of different Fused Attention mechanisms to efficiently capture uncertain
temporal dependencies in stock time-series data, interdependency among technical
indicators, and intricate patterns in financial time-series data.

*  Address key limitations of previous studies using attention-based models: Prior
studies on stock market forecasting were based on individual attention approaches
or standalone deep learning models. However, these models had difficulty focusing
on time steps that have a significant influence on model predictions, were unable
to capture long-term dependencies, and struggled to deal with noise in time-series
sequences. In order to overcome these limitations, we adopted three complementary
attention mechanisms: Sparse Attention, which focuses on impactful time steps while
simultaneously reducing computation time; Global Attention, which captures long-
term dependencies in sequences; and Random Attention, which mitigates noise and
reduces overfitting. We thus produced a model that is both robust and generalizable.

e Engineer a rich input feature space: The utilization of 13 technical indicators in
this study enriched the feature space for model learning, thereby enabling the pro-
posed Fused Attention model to learn intricate patterns and capture trends in stock
indices efficiently.

¢  Conduct extensive empirical analysis across nine global stock indices: Assessed
the model’s performance on nine volatile global stock market indices, validating its
performance and adaptability across a range of financial tasks.

*  Demonstrate superior performance and efficiency: We evaluated multiple global
stock indices to showcase the noteworthiness of the proposed Fused Attention model,
which not only maintains computational efficiency but also generalizes well across
varied market conditions.

1.2. Organization

This paper is organized in general as follows: Section 2 addresses related studies
on stock market forecasting and trend prediction. Section 3 introduces the suggested
Fusion Attention Model together with its constituents. Section 4 addresses the dataset
description. Section 6 offers an analysis of the results of different baseline models and the
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proposed Fused Attention model on different stock indices. Section 9 ends the study with a
conclusion and future plans.

2. Related Work

Two classic paradigms define stock market prediction approaches: technical analy-
sis and fundamental analysis. Fundamental analysis mainly focuses on the qualitative
and quantitative evaluation of unstructured textual sources—including financial disclo-
sures, earnings reports, and macroeconomic indices such as Gross Domestic Product (GDP)
growth or inflation rates to find the stock’s intrinsic worth. In contrast, technical analy-
sis uses the quantitative study of historical price charts, trading volumes, and statistical
indicators—such as moving averages and the Relative Strength Index (RSI)—to spot recur-
rent trends and patterns that project short-term price movements.

Various past studies are presented in Table 1.

Table 1. Comparison of techniques in stock market prediction.

Reference Technique Attention Task
[8] Backpropagation Neural Network No Time-Series Classification
[9] Neural Network and Support Vector Machine No Time-Series Classification
[10] Eoerl:;,l ;\Jle;vl\goal"il\(,’e S;f}})ezrt Vector Machine, Random No Time-Series Classification
[11] Kernel Factory No Time-Series Classification
[12] Genetic Algorithm and Support Vector Machine No Time-Series Classification
[13] LSTM No Time-Series Classification
[14] CNN and RNN No Time-Series Forecasting
[15] Transformer Yes Image Classification
[16] Transformer Yes Time-Series Forecasting
[17] LSTM with Attention Yes Time-Series Forecasting
[18] Informer Yes Time-Series Forecasting
[19] FEDformer Yes Time-Series Forecasting
[20] Crossformer Yes Time-Series Forecasting
[21] PatchTST Yes Time-Series Forecasting
[22] Graph Attention Network Yes Time-Series Forecasting
[23] BiLSTM, Transformer Yes Time-Series Forecasting
[24] Noise-Aware Attention Yes Time-Series Forecasting
[25] DozerFormer Yes Time-Series Forecasting
[26] Dynamic Feature Fusion Frameworks Yes Time-Series Forecasting
Our Model: SGR-Net  Fusion of Sparse, Global, and Random Attention Yes Time-Series Classification

In technical analysis, traders and financial analysts use various technical indicators,
like moving averages, RSI, etc., to predict the upcoming trend of a stock index. All technical
indicators are derived from historical raw stock index data. In the past, researchers have
leveraged these technical indicators along with machine learning models to improve the
prediction accuracy of the model. The author of [8] adopted backpropagation-based neural
networks along with fundamental analysis (16 financial variables) and technical analysis
(11 macroeconomic indicators) for stock market forecasting. The author concluded that
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models trained on 1 to 3 years of financial data outperformed the minimum standard
(market average return), but their incorporation of macroeconomic predictors produced
no statistically significant results. Recent studies [9,10,13,27,28] have used ensembles of
these technical indicators with machine learning techniques to learn complex and uncertain
stock patterns. The authors of [12] leveraged a support vector machine optimized with
a genetic algorithm for prediction of stock trends. The results not only improved the
accuracy of stock market trend prediction but also outperformed other baseline models.
Also, researchers have applied various ensemble techniques, such as Random Forest and
AdaBoost [11], to predict stock index trends. The author of [29] presented a new model to
forecast the S&P 500 index by combining technical indicators (e.g., moving averages and
volatility measures) with ESG sentiment indices produced from news data.

With the success of deep learning techniques in various tasks, such as image recog-
nition and language modeling, researchers and industrialists have started exploring the
application of deep learning to financial time-series data. The authors of [30,31] reviewed
many deep learning models for stock market prediction. Also, the author of [14] proposed
LSTNet, a hybrid framework that incorporates a convolutional neural network (CNN) for
short-term variable dependencies, an RNN for long-term trends, and an autoregressive
component for time-series forecasting. The study by [32], supported by adversarial training
for market stochasticity, introduced MONEY, an ensemble framework that integrates a
graph convolutional neural network (GCN) and hypergraph networks to describe pair-
wise industry linkages and group-level stock co-movement. Through improved long-term
dependency learning and robustness, their technique outperformed state-of-the-art algo-
rithms, especially in bear markets, by giving priority to graph processing over RNNSs,
contrary to past studies.

In 2017, the author of [33] introduced the Transformer architecture for sequence-to-
sequence tasks that has become a state-of-the-art deep learning architecture for attention-
centric applications; it captures long-range interdependence in high-dimensional time-
series data by using Self-Attention methods. The Transformer architecture, initially de-
signed for the natural language processing (NLP) domain, captures long-range depen-
dencies in sequential data and contextual interactions inside sequential data (e.g., word
tokens in sentences) via Self-Attention processes. Its success in NLP results from adaptive
token interaction and parallelizable training, which go beyond the sequential restrictions
of recurrent architectures. Transformers have since been applied to computer vision [15],
where spatial attention mechanisms substitute spatial embeddings to capture global pixel
correlations. More recently, these architectures have been adapted to time-series forecasting,
where temporal attention enables the modeling of complex sequential dependencies and
long-horizon trends, demonstrating their adaptability across domains [16].

Recent advances in attention-based time-series forecasting have introduced architec-
tures such as Informer, Crossformer, and FEDformer, each of which provides significant
improvements in efficiency and scalability but also exhibits limitations when applied to
financial data. Informer [18] leverages ProbSparse Self-Attention to reduce computational
overhead for long input sequences, but its reliance on sparsity in query-key interactions
often overlooks the subtle but critical short-term fluctuations characteristic of stock markets.
Crossformer [20] extends attention to model cross-dimensional dependencies in multi-
variate time series, a useful design for domains with stable inter-series correlations (e.g.,
sensor networks). However, in financial contexts, correlations between indicators are highly
dynamic and regime-dependent, causing instability in learned cross-dimensional repre-
sentations. FEDformer [19] integrates Fourier decomposition with attention to enhance
long-horizon forecasting, but its decomposition assumes quasi-stationary seasonal and
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trend components, which fails to generalize under the strong non-stationarity and abrupt
regime shifts observed in stock price movements.

While architectures such as Informer [18], Crossformer [20], and FEDformer [19]
have advanced attention-based time-series forecasting by improving scalability and long-
horizon prediction, their underlying assumptions limit their applicability in financial
contexts. These limitations have motivated the development of specialized attention-based
models tailored for stock price forecasting, such as dynamic feature fusion frameworks [26],
spot-forward parity-enhanced Transformers [34], memory-attention networks with long-
distance loss functions [35], and adversarially trained graph attention hybrids [32], each
addressing the non-stationarity, regime dependence, and stochasticity of financial markets.

Overall, the earlier studies have mainly focused on using an individual attention
model to model time-series data. However, our model consists of the linear fusion of
Sparse Attention, to reduce computational overhead; Global Attention, for capturing long-
term trends in time series; and Random Attention, for dealing with the overfitting of the
model. Despite the existence of many studies on the application of attention models for
various domains, there is a lack of studies utilizing the attention models for stock market
trend prediction. In our work, we utilize a hybrid attention model with thirteen technical
indicators extracted from raw stock price data for stock market trend prediction which
inherits the key strengths of each individual attention model.

3. Propose Model Architecture
The proposed Fused Attention model comprises the following main elements:

1.  Input Layer: It process several technical indicators derived from past raw stock market
data as inputs.

2. LSTM Layer: It captures the sequential dependencies in the financial time-series data.

3. Sparse Attention Module: It focuses on important, significant time steps under a
sparsity restriction.

4. Global Attention Module: It assigns dynamic priority values across all time steps.

5. Random Attention Module: It provides random weight assignment meant to enhance
generalization.

6.  Fusion Layer: The fusion layer combines attention outputs with feature representation
improvement.

7.  Feedforward Network: The feedforward network classifies final stock market trends
as up/down.

The proposed architecture is illustrated in Figure 1.
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Figure 1. Architecture of the proposed model, SGR-Net, integrating Sparse, Global, and Random
Attention mechanisms.

3.1. Input Layer

The input to the model consists of T time steps, where each time step contains 13 tech-
nical indicators derived from raw historical stock market data. The input data are defined as

X:{xl,xz,...,xT}, xtERN

where

*  Xis the input data with the shape (batch_size, seq_len, input_size).
¢ Each x; represents a feature vector that includes 13 technical indicators at time step .

3.2. LSTM Layer

The following gating method is used by the LSTM layer to update hidden states H; in
order to capture long-range dependencies:

1.  Forget Gate (Filtering Old Information):

Fr = 0(OpZt + ®pH; 1+ YF)
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2. Input Gate (Deciding What to Store):
Iy =0(©1Zi+PrH; 1+ Y1)

3. Candidate Memory Update (New-Information Processing):

M; = tanh(®pZ; + PpH; 1+ YY)
4.  Memory Cell Update (Retaining Important Information):

Mi=FO M1+ 16 M;
5. Output Gate (Deciding What to Reveal as Output):
Ot = 0(©pZt + PoH;—1 + ¥0)

6. Final Hidden State Calculation:

Hy =0:;© tanh(M[)

where

*  The forget, input, and output gates are denoted by F;, I;, and O;.

¢  The sigmoid activation function is denoted by .

*  The cell state capturing memory across time steps is denoted by M;.
*  The forget gate weights are denoted by ©r and ®r.

*  The input gate weights are denoted by ©; and ®;.

*  The memory update weights are denoted by ©®; and ®y,.

¢  The output gate weights are denoted by ©p and ®p.

*  Biases are denoted by Y.

The attention mechanism then uses the LSTM outputs, a hidden state sequence
H = [Hy,Hy,...,Hr],

as input.

3.3. Attention Mechanisms
3.3.1. Sparse Attention

Only a few key time steps are considered selectively by Sparse Attention to assign
weights, reducing noise and overfitting. The attention score is calculated as

where

*  W;isalearned parameter.
* (s denotes the Sparse Attention context vector.

3.3.2. Global Attention

Global Attention mechanisms assign dynamic importance scores across the time steps
to capture long-term dependencies. It is calculated as
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exp(Wght)

Pr= Z]-T:1 exp(Wghj)

T
Ce = Z Bihi
t=1
where

* W is atrainable parameter.
. Cg denotes the Global Attention context vector.

3.3.3. Random Attention

Random Attention assigns weights randomly to introduce stochasticity. It is computed

as follows:
U(0,1)
I
Z]':l U(O/ 1)
T
Cr=1Y 7ih
t=1
where

e U(0,1) is a uniform random distribution.
e (C, denotes the Random Attention context vector.

This method prevents the model from overfitting to specific patterns, improving
generalization and robustness of the model [36,37].

3.4. Fusion Layer

To utilize the complementary strengths of all three attention mechanisms—Sparse,
Global, and Random Attention—their outputs are concatenated:

F - [Cs, Cg, Cr]

Since each context vector has a dimensionality of hidden_size, the concatenated vector
F has dimensions hidden_size x 3.
Then, a linear transformation is applied to reduce redundancy:

F' = W(F + by
where

* Wy isalearnable weight matrix.
* byisabias term.

The final fused representation F’ is then forwarded to the feedforward layers.

3.5. Feedforward Network

The last stage is the classification layer, which consists of a two-layer fully connected
network:

e  First Layer:

—  This layer consists of a fully connected layer.
- The activation function used in this layer is ReLU.

e Second Layer:

-  This s a fully connected layer.
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—  The activation function used in this layer is the sigmoid activation function,
for predicting uptrends and downtrends.

The final prediction 7 is calculated as

7= c(WoF' + by)

for binary classification.

4. Dataset Description

To capture the volatility and dynamics of multiple markets, the dataset used in this
study consists of historical stock market data from nine major global indices. The following
indices were utilized to evaluate the model’s performance:

¢ Bombay Stock Exchange, India’s BSE index.

. Germany’s DAX index, Deutscher Aktienindex.

*  Dow Jones Industrial Average, USA (DJUS).

¢ NASDAQ—USA’s Composite Index.

¢ NIFTY 50: National Stock Exchange of India.

¢ Nikkei 225 Tokyo Stock Exchange, Japan.

¢ NYSE AMEX: NYSE American Composite Index, USA.

e  Standard and Poor’s 500, USA (S&P 500).

*  Shanghai stock index—China’s Shanghai Stock Exchange.

4.1. Preprocessing and Data Collection

The dataset comprises daily raw historical records of open, high, low, and closing
prices for each index, extracted using the Yahoo Finance (yfinance) library and from Quandl.
The dataset spans several years to ensure robust model evaluation and training.

Thirteen technical indicators were derived from the raw data to enhance predictive
performance. These indicators capture trends, momentum, volatility, and market strength.

4.2. Feature Engineering

Each instance in the dataset consists of technical indicators derived from historical
price data. The class variable represents the stock market trend (an uptrend or a downtrend)
for the next day, while the input features consist of the following 13 indicators:

—_

Simple Moving Average (ten-day SMA);

Ten-day Weighted Moving Average (WMA);
Stochastic %K (fourteen-day indicator);
Stochastic %D (three-day moving average of %K);
Five-day Discrepancy Index;

Ten-day Disparity Index;

Ten-day Oscillator Percentage (OSCP);

Ten-day Momentum;

0 0NN

Relative Strength Index (RSI; fourteen-day index);

—
o

Larry Williams %R (fourteen-day indicator);

—_
—_

Accumulation and Distribution Indicator (A/D);
Twenty-day Commodity Channel Index (CCI);
Moving Average Convergence Divergence (MACD: 12, 26, 9).

—
LN

Target Variable (Class Variable): The class variable represents the price movement
for the next day:
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¢ It takes a value of 1 (up) when the closing price of the next day surpasses that of the
current day.

¢ It takes a value of 0 (down) when the closing price of the next day is lower than that
of the current day.

4.3. Dataset Details

The dataset was divided into training (70%) and testing (30%) sets with the time-based
split method to preserve the order of the temporal sequence and to avoid information
leakage. The details of the dataset and the distributions of the uptrend and downtrend
classes are provided in Table 2.

Table 2. Dataset details with distribution of uptrend and downtrend classes across indices.

Stock Index Time Span Training Data (70%) Testing Data (30%)
Up- Down- Total Up- Down- Total In-
Trends Trends Instances Trends Trends stances

DJUS Index April 2005-July 2016 997 827 1824 438 344 782
NYSE AMEX Index January 1996-July 2016 1957 1668 3625 850 704 1554
BSE Index January 2005-December 2015 1020 892 1912 437 382 819
DAX Index January 1991-July 2016 2413 2114 4527 1044 897 1941
NASDAQ Index January 2005-December 2015 1058 865 1923 446 378 824
Nikkei 225 Index January 1987-July 2016 2609 2483 5092 1115 1067 2182
S&P 500 Index January 1962-July 2016 5118 4473 9591 2146 1964 4110
Shanghai Stock Exchange Index  January 1998-July 2016 1679 1470 3149 685 665 1350
NIFTY 50 Index January 2008-December 2015 709 644 1353 300 279 579

The dataset was normalized to a standard range to improve the learning process of
the model.

5. Experimental Setup

The complete hyperparameter configuration used in our experiments for the training
of all models is summarized in Table 3. These hyperparameters were selected on the basis
of best practices in the prior literature and empirical adjustments.

Table 3. Hyperparameter settings used in experiments.

Hyperparameter Value/Description

LSTM hidden units 128

Batch size 32

Learning rate 0.001 (Adam optimizer)

Loss function CrossEntropyLoss

Optimizer Adam

Epochs 10, 20, 30, 40, and 50 (all models); 10-100 in steps of 10 (SGR-Net)

The models were trained with an LSTM hidden size of 128 and using the Adam
optimizer with a fixed learning rate of 0.001. A mini-batch size of 32 was used for both
training and evaluation. Training was performed with varying epoch counts (10, 20, 30,
40, and 50 epochs) for baseline models, while the proposed Fused Attention model and
ablation study were trained for up to 100 epochs to explore convergence behavior. To ensure
reproducibility during different runs, we fixed the random seed to 42 for Random Attention
during evaluation. For comparative baseline models, we report accuracy and AUC across
varying epochs. In contrast, the proposed model, SGR-Net, is evaluated with a broader
set of metrics, including accuracy, AUC, precision, recall, and F1-score. To further ensure
robustness, 95% confidence intervals (Cls) were computed with the Wilcoxon test for
accuracy and bootstrap estimates for the remaining metrics.
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All experiments were conducted on Google Colab equipped with an Intel(R) Xeon(R)
CPU @ 2.20GHz and 13 GB of system RAM, without GPU acceleration.

6. Result Analysis and Discussion

The proposed model is tested on nine different stock indices, that is, the DJUS stock
index, the NYSE AMEX stock index, the BSE stock index, the DAX stock index, the NAS-
DAQ stock index, the Nikkei 225 stock index, the S&P 500 stock index, the Shanghai Stock
Exchange, and the NIFTY 50 stock index. The proposed Fused Attention model is executed
for 100 epochs on all the stock indices. The results are provided in Tables 4-12. Then,
the rationality and effectiveness of the proposed model are measured by comparing its
performance with different state-of-art models, which are represented in Tables 13-21 and
Figures 2-19. The comparison is performed for 50 epochs due to the overfitting of the
model beyond 50 epochs.

Table 4. Performance of the proposed model on the DJUS stock index.

Model Epochs Accuracy AUC Training Time (s)
10 0.8299 0.9144 2.5265
20 0.8333 0.9265 4.1947
30 0.8461 0.9345 6.7247
40 0.8581 0.9401 8.1700
. 50 0.8581 0.9442 10.9043
Fused Attention 60 0.8632  0.9467 12.0609
70 0.8542 0.9493 15.4306
80 0.8721 0.9481 18.3172
90 0.8555 0.9469 20.6902
100 0.8299 0.9535 23.8549

Table 5. Performance of the proposed model on the NYSE AMEX stock index.

Model Epochs Accuracy AUC  Training Time (s)
10 0.8900 0.9665 5.2198
20 0.8993 0.9697 8.7127
30 0.9145 0.9718 13.9070
40 0.9222 0.9728 17.9407
. 50 0.9428 0.9824 22.6548
Fused Attention 60 09445 09717 30.4493
70 0.9103 0.9690 43.5673
80 0.9048 0.9719 54.3972
90 0.9015 0.9713 72.3547
100 0.8758 0.9674 87.3527

Table 6. Performance of the proposed model on the BSE stock index.

Model Epochs Accuracy AUC  Training Time (s)
10 09098  0.9685 53015
20 09161 09691 9.1033
30 0.9085  0.9690 14.7980
40 09254 09710 19.3200
. 50 09324 09793 21.9127
Fused Attention 60 09285  0.9697 25.6869
70 09112 0.9704 29.3633
80 09024  0.9698 33.9195
90 0.8976 09707 36.6264

100 0.9098 0.9716 42.2621
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Table 7. Performance of the proposed model on the DAX index.

Model Epochs Accuracy AUC Training Time (s)
10 0.8891  0.9715 10.0830
20 0.8936  0.9749 17.8837
30 09126  0.9784 27.9773
40 0.8980  0.9748 36.8110
. 50 0.9208  0.9840 44.7582
Fused Attention 60 09101 09748 55.8708
70 0.9031  0.9756 65.7375
80 0.8903  0.9756 73.8886
90 0.9098 09771 83.1955
100 0.8918  0.9763 91.1857

Table 8. Performance of the proposed model on the NASDAQ index.

Model Epochs Accuracy AUC Training Time (s)
10 09127 09776 55162
20 09145  0.9792 7.9996
30 09219 09811 13.3201
40 09297  0.9799 18.2401
. 50 09364  0.9888 22.0903
Fused Attention 60 09355  0.9882 25.8913
70 09188  0.9787 28.6653
80 08715  0.9797 32,0084
90 09164 09793 35.9114
100 09176 09783 40.5604

Table 9. Performance of the proposed model on the Nikkei 225 stock index.

Model Epochs Accuracy AUC Training Time (s)
10 0.9072 0.9775 11.8397
20 0.8974 09711 19.1397
30 0.9192  0.9824 25.6087
40 0.9206  0.9834 34.4480
. 50 0.9436  0.9876 41.7566
Fused Attention 60 09456 09829 49.7582
70 0.8931  0.9718 57.6543
80 0.8992  0.9753 66.6440
90 0.9104  0.9837 75.8100
100 0.9075  0.9748 85.2727

Table 10. Performance of the proposed model on the S&P 500 stock index.

Model Epochs Accuracy AUC Training Time (s)
10 0.8966  0.9651 20.9063
20 0.9030 0.9687 41.7439
30 0.9130 0.9766 65.2541
40 0.9122 0.9676 82.2037
. 50 0.9291  0.9837 103.3167
Fused Attention 60 08922 09692 123.0970
70 0.9022 0.9712 144.4847
80 0.8959 0.9694 163.6611
90 0.9015 0.9719 189.9799
100 0.9032  0.9730 214.2635
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Table 11. Performance of the proposed model on Shanghai Stock Exchange data.

Model Epochs Accuracy AUC Training Time (s)

10 0.8400 0.9283 4.2346

20 0.8333 0.9425 7.2577

30 0.8615 0.9446 11.0987

40 0.8696 0.9563 15.3568

. 50 0.8730 0.9577 19.8575

Fused Attention 60 08733  0.9593 27.4802

70 0.8748 0.9597 34.3601

80 0.8748 0.9604 40.7298

20 0.8459 0.9583 46.8047

100 0.8281 0.9557 54.0861

Table 12. Performance of the proposed model on NIFTY 50.

Model Epochs Accuracy AUC Training Time (s)

10 0.8552 0.9610 2.1109

20 0.8897 0.9631 5.3348

30 0.8734 0.9677 6.4097

40 0.8979 0.9685 9.9200

. 50 0.8983 0.9678 11.8721

Fused Attention 60 0.8690  0.9656 15.5928

70 0.8828 0.9683 18.2711

80 0.8914 0.9683 21.8305

90 0.8724 0.9682 23.9187

100 0.8948 0.9689 27.5492

6.1. Performance of All Models on DJUS Stock Index

The performance of all models on the DJUS stock index is shown in Table 13 and
illustrated in Figures 2 and 3. On the DJUS stock index, the proposed Fused Attention
model outperforms all other baseline models with the highest accuracy of 85.81% and the

highest AUC of 0.9442 at 50 epochs. This suggests its improved capacity to learn intricate

patterns in financial time-series data. Self-Attention performs competitively, especially
at higher epochs; our model outperforms it with a 0.49% better AUC and a 1.89% higher
accuracy at 50 epochs. With an AUC of 0.9265 at just 20 epochs, Fused Attention also shows
faster convergence and better generalization than Self-Attention’s 0.9179 AUC.

Table 13. Performance of different models on DJUS stock index.

Model Epochs Accuracy AUC Training Time (s)
10 0.7813  0.8869 1.4998
20 0.8133  0.9020 2.3865

LSTM 30 0.8171  0.9077 4.2865
40 0.8312 09130 4.8311
50 0.8338 09164 6.6354
10 0.8031  0.8870 1.0240
20 0.8223  0.9019 2.2396

GRU 30 0.7673  0.9063 3.3364
40 0.8261 09127 4.0333
50 0.8286  0.9170 5.7167
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Table 13. Cont.

Model Epochs Accuracy AUC Training Time (s)
10 0.7954 0.8845 1.5839
20 0.8159 0.9016 2.6829

Vanilla Attention 30 0.8197 0.9080 41972
40 0.8286 0.9124 6.1048
50 0.8312 0.9162 6.7852
10 0.8261 0.9101 1.9021
20 0.8312 0.9180 4.4426

Self-Attention 30 0.8350 0.9260 6.0507
40 0.8529 0.9318 8.1773
50 0.8453 0.9393 10.1723
10 0.8299 0.9144 2.5265
20 0.8333 0.9265 4.1947

Fused Attention 30 0.8461 0.9345 6.7247
40 0.8581 0.9401 8.1700
50 0.8581 0.9442 10.9043

Accuracy vs. Epochs for Each Model on DJUS Stock Index
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Figure 2. Accuracy vs. epochs for each model on DJUS stock index.
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Figure 3. AUC vs. epochs for each model on DJUS stock index.
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6.2. Performance of All Models on NYSE AMEX Stock Index

The performance of all models on the NYSE AMEX stock index is shown in Table 14
and illustrated in Figures 4 and 5. The proposed model shows the best AUC of 0.9824
and the highest accuracy of 94.28% on the NYSE AMEX stock index at 50 epochs, thereby
proving its increased capacity to extract complex patterns and correlations in financial time

series. Especially at 30 epochs, Fused Attention achieves an AUC of 0.9718, above the

best performance of several baseline models. Self-Attention obtains a competitive AUC of

0.9726 after 40 epochs; our model shows better generalization.

Table 14. Performance of different models on NYSE AMEX stock index.

Model Epochs Accuracy AUC  Training Time (s)
10 0.8752 0.9475 2.9539
20 0.8822 0.9587 6.0131
LSTM 30 0.8970 0.9647 8.3584
40 0.8990 0.9678 10.2014
50 0.9060 0.9703 14.3584
10 0.8398 0.9462 2.2718
20 0.8610 0.9561 42328
GRU 30 0.8867 0.9632 7.2727
40 0.8958 0.9684 9.0038
50 0.9015 0.9696 10.0793
10 0.8655 0.9479 3.1822
20 0.8861 0.9593 5.4869
Vanilla Attention 30 0.9009 0.9648 9.4229
40 0.8912 0.9679 13.1927
50 0.8983 0.9702 18.9116
10 0.8835 0.9627 44814
20 0.8771 0.9656 9.0363
Self-Attention 30 0.8945 0.9719 12.1958
40 0.8900 0.9726 16.4426
50 0.8970 0.9683 21.4925
10 0.8900 0.9665 5.2198
20 0.8993 0.9697 8.7127
Fused Attention 30 0.9145 0.9718 13.9070
40 0.9222 0.9728 17.9407
50 0.9428 0.9824 22.6548

Accuracy vs. Epochs for Each Model on NYSE AMEX Stock Index
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Figure 4. Accuracy vs. epochs for each model on NYSE AMEX stock index.
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AUC vs. Epochs for Each Model on NYSE AMEX Stock Index
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Figure 5. AUC vs. epochs for each model on NYSE AMEX stock index.

6.3. Performance of All Models on BSE Stock Index

The performance of all models on the BSE stock index is shown in Table 15 and
illustrated in Figures 6 and 7. The experiments on BSE stock data show that Fused Attention
often beats others in terms of accuracy and AUC. Fused Attention shows its great capacity in
catching market trends at 50 epochs, since it achieves a maximum accuracy of 0.932439 and
the best AUC score of 0.979257. Among conventional recurrent models, LSTM and GRU
show similar performance; LSTM peaks at 0.912195 accuracy and 0.969459 AUC, while GRU
achieves 0.906098 accuracy and 0.969459 AUC at their best-performing epochs. With an
accuracy of 0.908537 and an AUC of 0.969561, Vanilla Attention performs modestly but is
a good alternative to Fused Attention. Though efficient, Self-Attention trails somewhat
behind, with an AUC of 0.969769 and an accuracy of 0.910976. Training times rise with
epochs across all models; Fused Attention, at 50 epochs, takes the longest time—21.91 s—
indicating a trade-off between computational expense and predictive accuracy. Balancing
accuracy and strong AUC performance, Fused Attention shows overall to be the most
successful model for BSE stock trend prediction.

Table 15. Performance of different models on BSE stock index.

Model Epochs Accuracy AUC Training Time (s)
10 0.8976  0.9645 3.3735
20 0.9061  0.9689 6.8165
LSTM 30 0.9037  0.9692 12.2368
40 09122  0.969%4 12.4857
50 0.8988  0.9695 15.2494
10 0.8854  0.9646 2.2977
20 0.9061  0.9689 5.4531
GRU 30 0.9061  0.9693 7.0210
40 0.8988  0.9694 10.3086
50 0.9024  0.9697 12.0394
10 0.8976  0.9635 3.1332
20 0.9073  0.9683 7.9487
Vanilla Attention 30 0.9000  0.9693 10.4125
40 0.8976  0.9696 13.8738

50 0.9085 0.9694 16.2311
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Table 15. Cont.

Model Epochs Accuracy AUC Training Time (s)
10 0.8683  0.9679 4.6417
20 0.9110  0.9689 7.7108

Self-Attention 30 0.9000  0.9690 13.3624
40 0.9061  0.9692 18.6159
50 0.9012  0.9698 21.5084
10 0.9098  0.9685 5.3015
20 0.9161  0.9691 9.1033

Fused Attention 30 0.9085  0.9690 14.7980
40 0.9254  0.9710 19.3200
50 0.9324  0.9793 21.9127

Accuracy vs. Epochs for Each Model on BSE Stock Index
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Figure 6. Accuracy vs. epochs for each model on BSE stock index.
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Figure 7. AUC vs. Epochs for each model on BSE stock index.

6.4. Performance of All Models on DAX Stock Index

The performance of all models on the DAX stock index is shown in Table 16 and
illustrated in Figures 8 and 9. The findings on the DAX index dataset show that Fused
Attention beats all models in both accuracy (0.920278) and AUC (0.983956) at 50 epochs.
Though computationally costly, Self-Attention also produces excellent results (0.909840
accuracy and 0.975661 AUC). With smaller training time, LSTM and GRU both perform
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competitively, with GRU being somewhat better in AUC (0.974304) after 50 epochs. Vanilla
Attention trails behind, displaying reduced accuracy compared with other deep learning
techniques. Offering the optimum trade-off between accuracy and predictive power, Fused

Attention seems to be the best option for DAX index trend prediction overall.

Table 16. Performance of different models on DAX stock index.

Model Epochs Accuracy AUC Training Time (s)
10 0.8707 0.9516 5.1605
20 0.8913 0.9628 11.9538

LSTM 30 0.8779 0.9677 17.2379
40 0.8918 0.9718 21.3852
50 0.9016 0.9739 27.1811
10 0.8748 0.9530 5.9193
20 0.8923 0.9626 9.1716

GRU 30 0.8964 0.9701 12.9187
40 0.8856 0.9717 17.0575
50 0.9011 0.9743 20.9216
10 0.8485 0.9511 11.0104
20 0.8671 0.9611 11.9999

Vanilla Attention 30 0.8985 0.9690 17.4971
40 0.8944 0.9721 26.3364
50 0.8980 0.9726 29.6048
10 0.8887 0.9663 9.0568
20 0.8980 0.9728 15.8787

Self-Attention 30 0.9109 0.9752 24.8836
40 0.8805 0.9727 34.1670
50 0.9098 0.9757 43.9295
10 0.8891 0.9715 10.0830
20 0.8936 0.9749 17.8837

Fused Attention 30 0.9126 0.9784 27.9773
40 0.8980 0.9748 36.8110
50 0.9208 0.9840 44.7582
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Figure 8. Accuracy vs. epochs for each model on DAX stock index.
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AUC vs. Epochs for Each Model on DAX Stock Index
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Figure 9. AUC vs. epochs for each model on DAX stock index.

6.5. Performance of All Models on NASDAQ Stock Index

The performance of all models on the NASDAQ stock index is shown in Table 17 and
illustrated in Figures 10 and 11. The performance of all the models on NASDAQ stock
market data demonstrates that the Fused Attention model beats all other models with
93.64% accuracy and 0.9888 AUC at 50 epochs. With LSTM achieving 92.36% accuracy
and 0.9790 AUC and GRU reaching 92.36% accuracy and 0.9787 AUC at 50 epochs among
the baseline models, LSTM and GRU show competitive performance. Indicating great
feature extraction ability, the Self-Attention model also performs well, peaking at 92.72%
accuracy and 0.9796 AUC at 40 epochs. With 92.36% accuracy and 0.9793 AUC across
50 epochs, Vanilla Attention trails somewhat behind. Although Fused Attention offers the
best performance, its training duration is more than that of GRU and Vanilla Attention.
The overall results show that Fused Attention is the most appropriate model for this work
since it greatly increases trend prediction capacities for NASDAQ data.

Table 17. Performance of different models on NASDAQ stock index.

Model Epochs Accuracy AUC Training Time (s)
10 0.9018  0.9709 5.9462
20 09176  0.9776 6.9876
LSTM 30 09115  0.9783 9.7193
40 0.9152  0.9790 12.0025
50 0.9236  0.9790 16.2997
10 0.9091  0.9728 2.2077
20 09212  0.9779 4.4367
GRU 30 0.9236  0.9787 7.6702
40 0.9224  0.9794 8.3064
50 09176  0.9794 11.8980
10 0.9030  0.9697 3.2347
20 0.9079  0.9773 6.9445
Vanilla Attention 30 0.9152  0.9785 10.4709
40 0.9030  0.9785 12.8610

50 09236  0.9793 15.8315
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Table 17. Cont.
Model Epochs Accuracy AUC Training Time (s)
10 0.9127 0.9770 3.8595
20 0.9164 0.9786 9.8097
Self-Attention 30 0.9188 0.9790 12.5427
40 0.9273 0.9796 17.0108
50 0.9212 0.9792 20.4992
10 0.9127 0.9776 5.5162
20 0.9145 0.9792 8.0000
Fused Attention 30 0.9219 0.9811 13.3201
40 0.9297 0.9799 18.2401
50 0.9364 0.9888 22.0903
Accuracy vs. Epochs for Each Model on NASDAQ Stock Index
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Figure 10. Accuracy vs. epochs for each model on NASDAQ stock index.
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Figure 11. AUC vs. epochs for each model on NASDAQ stock index.

6.6. Performance of All Models on Nikkei 225 Stock Index

The performance of all models on the Nikkei 225 stock index is shown in Table 18
and illustrated in Figures 12 and 13. On the Nikkei stock index dataset over several
epochs, the performance of several models—LSTM, GRU, Vanilla Attention, Self-Attention,
and Fused Attention model—was assessed. With an accuracy of 94.36% and an AUC of
0.9876, Fused Attention at 50 epochs showed, among all models, the best performance,
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surpassing others in both accuracy and predictive power. With accuracy rates above
90% at higher epochs, the Self-Attention and Vanilla Attention models likewise displayed
competitive performance. With the increase in epochs, the LSTM and GRU models showed
consistent progress in accuracy and AUC; their final accuracy values stayed below those
of the attention-based models. The better performance of Fused Attention shows that
including several attention mechanisms improves the capacity of the model to detect
significant stock market patterns. Higher training time (57.62 s for 50 epochs) results from
this, though, compared with LSTM (39.92 s) and GRU (27.62 s). Despite having a higher
computational cost, the Fused Attention model shows overall to be the best option for
Nikkei stock index prediction since it balances high accuracy and predictive capabilities.

Table 18. Performance of different models on Nikkei 225 stock index.

Model Epochs Accuracy AUC  Training Time (s)
10 0.8827 0.9651 8.7356
20 0.9011 0.9696 23.6938
LSTM 30 0.8983  0.9717 24.0915
40 0.8924 0.9727 29.1918
50 0.8763 0.9720 39.9231
10 0.8942 0.9647 6.1163
20 0.8983 0.9695 11.1740
GRU 30 09033 09715 19.4970
40 0.9061 0.9727 21.4837
50 0.9052 0.9725 27.6272
10 0.8781 0.9643 7.7629
20 0.8960 0.9695 15.4814
Vanilla Attention 30 0.9020 0.9718 22.8225
40 0.8988  0.9725 33.2535
50 0.9079 0.9726 41.2992
10 0.9047 0.9704 11.1087
20 0.8988 0.9721 22.3048
Self-Attention 30 0.9061 0.9727 32.5559
40 0.8685  0.9723 42.5713
50 0.9047 0.9726 54.2201
10 09072  0.9775 11.6053
20 0.8974 0.9711 23.6152
Fused Attention 30 0.9192 0.9824 34.8730
40 0.9206  0.9834 45.7169
50 09436  0.9876 57.6205

Accuracy vs. Epochs for Each Model on Nikkei 225 Stock Index
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Figure 12. Accuracy vs. epochs for each model on Nikkei 225 stock index.
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AUC vs. Epochs for Each Model on Nikkei 225 Stock Index
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Figure 13. AUC vs. epochs for each model on Nikkei 225 stock index.

6.7. Performance of All Models on S&P 500 Stock Index

The performance of all models on the S&P 500 stock index is shown in Table 19 and
illustrated in Figures 14 and 15. On S&P market data, the results of several models show
that attention-based models beat the other deep learning models, including LSTM and
GRU. With a high training time of 67.54 s, LSTM progressively improves with epochs;
it reaches 89.15% accuracy and an AUC of 0.9669 at 50 epochs. With an AUC of 0.9667
and 88.86% accuracy at 40 epochs, GRU performs similarly; it is somewhat faster, at
51.70 s. With an AUC of 0.9669 at 50 epochs and 89.90% accuracy, Vanilla Attention beats
both but with a 72.24-s training time. Self-Attention has an AUC of 0.9676 and 89.68%
accuracy; although its training duration peaks at 99.88 s, with the longest training time
of 103.31 s, the Fused Attention model produces the best results, 92.90% accuracy and
an AUC of 0.9837 at 50 epochs. Although conventional models demonstrate consistent
progress, attention-based models, especially the proposed Fused Attention model, offer
better predictive potential.

Table 19. Performance of different models on S&P 500 stock index.

Model Epochs Accuracy AUC Training Time (s)
10 0.8750  0.9584 14.2380
20 0.8667  0.9644 28.8773
LSTM 30 0.8701  0.9649 41.3208
40 0.8883  0.9670 54.5288
50 0.8915  0.9669 67.5416
10 0.8862  0.9593 10.7352
20 0.8784  0.9654 19.7192
GRU 30 0.8706  0.9656 31.7420
40 0.8886  0.9669 41.1791
50 0.8866  0.9667 51.7076
10 0.8857  0.9593 15.9441
20 0.8939  0.9641 29.2153
Vanilla Attention 30 0.8986  0.9665 43.6378
40 0.8978  0.9662 57.3505

50 0.8991 0.9669 72.2488
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Table 19. Cont.

Model Epochs Accuracy AUC Training Time (s)
10 0.8818 0.9643 19.7511
20 0.8978 0.9670 39.3778
Self-Attention 30 0.8891 0.9673 60.6932
40 0.8969 0.9674 78.0388
50 0.8703 0.9677 99.8812
10 0.8966 0.9651 20.9063
20 0.9030 0.9687 41.7439
Fused Attention 30 0.9130 0.9766 65.2541
40 0.9122 0.9676 82.2037
50 0.9291 0.9837 103.3167
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0931 Model
—e=— LSTM
—x— GRU
0921 === Vanilla Attention
—+= Self Attention
—e+= Fused Attention
0.91
> *
@ 090 /
;d H

o
®
©

>< /+
0.88 b ;
o. \
0.87 \ /: N,
10 20 30 40 50
Number of Epochs

Figure 14. Accuracy vs. epochs for each model on S&P 500 stock index.
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Figure 15. AUC vs. epochs for each model on S&P 500 stock index.

6.8. Performance of All Models on Shanghai Stock Index

The performance of all models on the Shanghai stock index is shown in Table 20
and illustrated in Figures 16 and 17. The Fused Attention model at 50 epochs obtains the
highest accuracy (87.30%) and AUC (0.9577), according to a performance study of several
models on the Shanghai Stock Exchange dataset, thereby ranking as the best-performing
model. Strong performance in stock trend prediction is shown by the closely following Self-



Forecasting 2025, 7, 50

24 of 36

Attention model at 50 epochs, with an accuracy of 87.18% and an AUC of 0.9570. With the
increase in epochs, LSTM and GRU show consistent improvements among conventional
models; LSTM reaches 84.37% accuracy and 0.9332 AUC at 50 epochs, while GRU reaches
83.77% accuracy and 0.9933 AUC. Vanilla Attention performs poorly in the first epochs
but gains an accuracy of 84.07% and an AUC of 0.9305 in 50 epochs. Later epochs have
Self-Attention outperforming Vanilla Attention and standard RNN models, thus proving
the advantages of attention mechanisms. Fused Attention achieves the greatest AUC score,
thereby indicating better predictive ability than any other model.

Table 20. Performance of different models on Shanghai stock index.

Model Epochs Accuracy AUC Training Time (s)
10 0.8156  0.9028 2.5063
20 0.8178 09152 4.9480
LSTM 30 0.8341  0.9214 6.6090
40 0.8370  0.9261 9.1610
50 0.8437  0.9333 11.5554
10 0.8170  0.9034 1.7150
20 0.8200  0.9141 4.3073
GRU 30 0.8296  0.9220 5.3555
40 0.8356  0.9269 8.6228
50 0.8378  0.9343 9.8929
10 0.7911 0.9029 2.4022
20 0.8215  0.9142 4.8537
Vanilla Attention 30 0.8252  0.9197 7.9445
40 0.8207  0.9257 10.3482
50 0.8407  0.9306 12.4405
10 0.7970 09179 3.3445
20 0.8207  0.9323 7.8554
Self-Attention 30 0.8556  0.9376 11.5627
40 0.8615  0.9512 19.2510
50 0.8719  0.9571 20.3122
10 0.8400  0.9283 42346
20 0.8333  0.9425 7.2577
Fused Attention 30 0.8615 0.9446 11.0987
40 0.8696  0.9563 15.3568
50 0.8730  0.9577 19.8575
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Figure 16. Accuracy vs. epochs for each model on Shanghai stock index.
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AUC vs. Epochs for Each Model on Shanghai Stock Index
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Figure 17. AUC vs. epochs for each model on Shanghai stock index.

6.9. Performance of All Models on NIFTY 50 Stock Index

The performance of all models on the NIFTY 50 stock index is shown in Table 21
and illustrated in Figures 18 and 19. With an accuracy of 0.8983 and an AUC of 0.9968 at
40 epochs, the Fused Attention model performs the best according to the result analysis
of the NIFTY 50 stock market trend prediction. Although it needs longer training time
(16.22 s) than Fused Attention (9.92 s at 40 epochs and 11.87 s at 50 epochs), Self-Attention
is a close predictor, with 0.8948 accuracy and 0.96 AUC at 50 epochs. With more epochs,
traditional models such as LSTM and GRU also exhibit gains; still, their top performances
of 0.8862 and 0.8845 accuracy, respectively, do not exceed 0.96 AUC. Vanilla Attention gains
with epochs, although in both accuracy and AUGC, it stays rather behind Self-Attention and
Fused Attention.

Table 21. Performance of different models on NIFTY 50 stock index.

Model Epochs Accuracy AUC Training Time (s)
10 0.8241  0.9169 2.0056
20 0.8517  0.9463 3.3540
LSTM 30 0.8638  0.9531 6.6336
40 0.8759  0.9572 6.3785
50 0.8862  0.9589 8.3614
10 0.8328  0.9269 1.0515
20 0.8655  0.9487 2.1409
GRU 30 0.8655  0.9534 3.2570
40 0.8724  0.9568 5.7098
50 0.8845  0.9595 5.6378
10 0.8293  0.9243 1.5489
20 0.8483  0.9471 4.1955
Vanilla Attention 30 0.8707  0.9537 5.7672
40 0.8707  0.9575 7.4089
50 0.8741  0.9591 7.7112
10 0.8569  0.9511 2.3682
20 0.8828  0.9610 5.2289
Self-Attention 30 0.8603  0.9623 5.8652
40 0.8879  0.9654 9.9230

50 0.8948 0.9672 16.2260
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Table 21. Cont.

Model Epochs Accuracy AUC Training Time (s)
10 0.8552  0.9610 2.1109
20 0.8897  0.9631 5.3348
Fused Attention 30 0.8734  0.9677 6.4097
40 0.8979  0.9685 9.9200
50 0.8983  0.9678 11.8721
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Accuracy vs. Epochs for Each Model on NIFTY 50 Stock Index
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Figure 18. Accuracy vs. epochs for each model on NIFTY 50 stock index.
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Figure 19. AUC vs. epochs for each model on NIFTY 50 stock index.

7. Comparative Analysis of Model Performance

Tables 22 and 23 summarize the best classification accuracy and AUC values, respec-
tively, achieved by the baseline models (LSTM, GRU, Vanilla Attention, and Self-Attention)
and the proposed Fused Attention architecture (SGR-Net) across nine global stock indices.
A clear pattern emerges from both metrics: while conventional recurrent models (LSTM

and GRU) and attention-based variants provide competitive performance, the integra-

tion of Sparse, Global, and Random Attention modules in SGR-Net consistently delivers

superior results.
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Table 22. Best performance (accuracy (best over epochs)) of all models across stock indices.

NYSE Shanghai
Model DJUS AMEX BSE DAX NASDAQ Nikkei 225  S&P 500 Stock NIFTY 50
Exchange
LSTM 0.8338 0.9060 09122  0.9016 0.9236 0.9011 0.8915 0.8437 0.8862
GRU 0.8286 0.9015 0.9061  0.9011 0.9236 0.9061 0.8886 0.8378 0.8845
Vanilla Attention 0.8312 0.9009 0.9085 0.8985 0.9236 0.9079 0.8991 0.8407 0.8741
Self-Attention 0.8529 0.8970 09110 0.9109 0.9273 0.9061 0.8978 0.8719 0.8948
Fused Attention (SGR-Net)  0.8581 0.9428 0.9324  0.9208 0.9364 0.9436 0.9291 0.8730 0.8983

Values are the best per model per dataset (across 10-50 epochs).

Table 23. Best performance (AUC (best over epochs)) of all models across stock indices.

NYSE Shanghai
Model DJUS BSE DAX NASDAQ Nikkei 225  S&P 500 Stock NIFTY 50

AMEX

Exchange

LST™M 0.9164 0.9703 0.9694  0.9739 0.9790 0.9727 0.9669 0.9333 0.9589
GRU 0.9170 0.9696 0.9697  0.9743 0.9794 0.9727 0.9669 0.9343 0.9595
Vanilla Attention 0.9162 0.9702 0.9696  0.9726 0.9793 0.9726 0.9669 0.9306 0.9591
Self-Attention 0.9393 0.9726 0.9698  0.9757 0.9796 0.9727 0.9677 0.9571 0.9672
Fused Attention (SGR-Net)  0.9442 0.9824 0.9793  0.9840 0.9888 0.9876 0.9837 0.9577 0.9685

Values are the best per model per dataset (across 10-50 epochs).

7.1. Accuracy Analysis

The proposed model, SGR-Net, achieves the highest accuracy across all indices,
with improvements ranging between 0.5% and 4.5% compared with the strongest base-
lines. Notably, on the NYSE AMEX and Nikkei 225 indices, SGR-Net attains 0.9428 and
0.9436, respectively, surpassing the best Self-Attention baseline scores of 0.8970 and 0.9061.
This margin of nearly 4-5% absolute gain demonstrates the effectiveness of the fusion
strategy under markets with moderate-to-high volatility. On relatively stable markets,
such as DJUS and Shanghai, improvements are more modest (SGR-Net: 0.8581 and 0.8730
vs. Self-Attention: 0.8529 and 0.8719), highlighting that Fused Attention is particularly
advantageous in complex or noisy financial environments.

7.2. AUC Analysis

The AUC results reinforce the robustness of the Fused Attention design. SGR-Net
achieves near-perfect separability with AUC > 0.98 on most developed market indices
(NYSE AMEX: 0.9824; NASDAQ: 0.9888; Nikkei 225: 0.9876; S&P 500: 0.9837). These
values represent 0.8-1.6% gains over Self-Attention, a margin that, although numerically
small, is statistically meaningful given the difficulty of improving AUC beyond 0.97 in
financial classification tasks. On emerging markets such as the Shanghai Stock Exchange,
the advantage is marginal (0.9577 vs. 0.9571), again suggesting that Fused Attention is most
beneficial when handling volatility and nonlinear dynamics.

7.3. Critical Observations

The consistency of SGR-Net across diverse indices underscores its generalizability,
with no single dataset showing underperformance relative to baselines. The largest relative
improvements appear on markets with higher noise and liquidity variations (e.g., NYSE
AMEX, and Nikkei 225), which validates the inclusion of the stochastic Random Attention
component as a means to mitigate overfitting and enhance adaptability. Although Self-
Attention remains strong on stable markets (e.g., Shanghai and DAX), SGR-Net’s fusion pro-
vides an incremental but consistent edge, supporting the claim of robustness across regimes.

Overall, the experimental evidence shows that the Fused Attention mechanism is not
only statistically superior but also practically relevant for real-world trading scenarios,
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where small improvements in predictive reliability can translate into significant finan-
cial gains.

8. Ablation Study
8.1. Individual Attention Ablation Study: Sparse, Global, and Random Attention

Table 24 presents the ablation study on the five datasets (DJUS, NYSE AMEX, BSE,
DAX, and NASDAQ), highlighting the relative contribution of each attention component.

Table 24. Individual-attention-component ablation study on DJUS, NYSE AMEX, BSE, DAX, and NAS-
DAQ stock indices: best-epoch configuration with accuracy, precision, recall, F1-score, and AUC.
Values are reported up to four decimal places; numbers in brackets denote the 95% confidence
intervals (CIs).

Model Variant Metric DJUS NYSE AMEX BSE DAX NASDAQ
Accuracy 0.8352 0.9072 0.9127 0.9048 0.9244
[0.8150-0.8550] [0.8920-0.9190] [0.8940-0.9290] [0.8890-0.9180] [0.9060-0.9400]
Precision 0.8285 0.8830 0.8880 0.8780 0.8920
[0.8000-0.8540] [0.8620-0.9020] [0.8640-0.9100] [0.8550-0.8980] [0.8680-0.9140]
Only Sparse Recall 0.8421 0.8895 0.8975 0.8910 0.9035
[0.8150-0.8680] [0.8690-0.9090] [0.8750-0.9190] [0.8700-0.9110] [0.8800-0.9250]
Fl-score 0.8351 0.8862 0.8927 0.8842 0.8973
[0.8100-0.8600] [0.8680-0.9040] [0.8730-0.9110] [0.8660-0.9020] [0.8770-0.9150]
AUC 0.9250 0.9698 0.9696 0.9742 0.9795
[0.9185-0.9310] [0.9660-0.9735] [0.9635-0.9755] [0.9695-0.9790] [0.9735-0.9850]
Accuracy 0.8361 0.9084 0.9129 0.9029 0.9256
[0.8170-0.8560] [0.8950-0.9200] [0.8950-0.9290] [0.8880-0.9160] [0.9080-0.9410]
Precision 0.8328 0.8845 0.8895 0.8765 0.8940
[0.8050-0.8570] [0.8640-0.9040] [0.8660-0.9120] [0.8530-0.8990] [0.8700-0.9160]
Only Global Recall 0.8442 0.8880 0.8988 0.8887 0.9052
[0.8180-0.8700] [0.8680-0.9080] [0.8770-0.9200] [0.8680-0.9090] [0.8820-0.9260]
Fl-score 0.8383 0.8862 0.8940 0.8825 0.8989
[0.8140-0.8620] [0.8680-0.9035] [0.8750-0.9120] [0.8650-0.9010] [0.8790-0.9165]
AUC 0.9290 0.9699 0.9697 0.9744 0.979
[0.9200-0.9380] [0.9665-0.9738] [0.9640-0.9752] [0.9698-0.9790] [0.9740-0.9852]
Accuracy 0.8349 0.9067 0.9126 0.9053 0.9249
[0.8150-0.8550] [0.8920-0.9180] [0.8940-0.9290] [0.8890-0.9180] [0.9070-0.9400]
Precision 0.8292 0.8820 0.8870 0.8795 0.8928
[0.8020-0.8540] [0.8610-0.9010] [0.8630-0.9100] [0.8550-0.9000] [0.8690-0.9150]
0.8410 0.8865 0.8979 0.8905 0.9041
Only Random Recall [0.8140-0.8670] [0.8660-0.9060] [0.8750-0.9190] [0.8700-0.9100] [0.8810-0.9250]
Fl-score 0.8344 0.8842 0.8923 0.8848 0.8981
[0.8100-0.8590] [0.8660-0.9020] [0.8730-0.9100] [0.8670-0.9020] [0.8780-0.9160]
AUC 09215 0.9696 0.9695 0.9741 0.9793
[0.9185-0.9300] [0.9660-0.9732] [0.9635-0.9750] [0.9692-0.9788] [0.9732-0.9848]
Accuracy 0.8581 0.9428 0.9324 0.9208 0.9364
[0.8370-0.8780] [0.9300-0.9560] [0.9130-0.9490] [0.9070-0.9350] [0.9200-0.9520]
Precision 0.9000 0.9300 0.9280 0.9140 0.9360
[0.8730-0.9250] [0.9120-0.9460] [0.9050-0.9490] [0.8950-0.9310] [0.9120-0.9560]
SGRNet Recall 0.8800 0.9360 0.9260 0.9180 0.9380
[0.8520-0.9050] [0.9180-0.9520] [0.9030-0.9470] [0.8980-0.9380] [0.9140-0.9590]
Fl-score 0.8900 0.9330 0.9270 0.9160 0.9370
[0.8640-0.9140] [0.9160-0.9490] [0.9070-0.9460] [0.8980-0.9340] [0.9150-0.9560]
AUC 0.9442 0.9824 0.9793 0.9840 0.9888
[0.9320-0.9570] [0.9760-0.9880] [0.9690-0.9880] [0.9780-0.9890] [0.9820-0.9940]

The Sparse-only configuration exhibited the weakest performance across most indices.
For instance, on DJUS, accuracy dropped to 0.8352 (95% CI: 0.8150-0.8550) and AUC to
0.9250 (95% CI: 0.9185-0.9310). Similarly, on BSE and DAX, the accuracy scores of 0.9127
and 0.9048, respectively, were lower than SGR-Net by more than 5%. Precision, recall,
and F1-scores also remained consistently weaker, highlighting that relying exclusively on
Sparse Attention fails to capture long-range dependencies critical in financial time series.
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The Global-only variant performed better than the Sparse-only one, with accuracy
scores in the range of 0.8361-0.9256 across datasets. For instance, on DAX, the accuracy
was 0.9029 (95% CI: 0.8880-0.9160), with an AUC of 0.9744 (95% CI: 0.9698-0.9790), which
is competitive but still below that of SGR-Net. Precision values, such as 0.8328 (95% CI:
0.8050-0.8570) on DJUS, indicate improved stability, yet recall scores dropped in several
cases, showing that Global Attention alone overemphasizes dominant signals and under-
represents minority trends.

Random-only Attention achieved moderate results, better than Sparse-only but weaker
than Global-only in most indices. On NASDAQ, the accuracy was 0.9249 (95% CI:
0.9070-0.9400) with 0.9793 AUC (95% CI: 0.9732-0.9848), but the recall was relatively
lower (0.9041, 95% CI: 0.8810-0.9250), indicating limited ability to consistently capture
directional changes. Although the stochastic initialization occasionally matched Global
Attention in precision, as observed in DJUS, with 0.8292 (95% CI: 0.8020-0.8540), the overall
stability across epochs was weaker.

The full SGR-Net model consistently outperformed the ablation variants across all
indices. For example, on NYSE AMEX, accuracy was 0.9428 (95% CI: 0.9300-0.9560)
with 0.9824 AUC (95% CI: 0.9760-0.9880), far exceeding the ablation configurations by
5-8%. Similarly, on NASDAQ, SGR-Net reached 0.9364 (95% CI: 0.9200-0.9520) accuracy
and 0.9888 (95% CI: 0.9820-0.9940) AUC. Precision, recall, and Fl-score all maintained
higher estimates with narrower CIs; notably, for DJUS the Fl-score was 0.8900 (95%
CI: 0.8640-0.9140). This indicates that the synergy of the Sparse, Global, and Random
Attention components produces both more accurate and more stable predictions, validating
the necessity of all three attention mechanisms.

Table 25 presents the ablation study on the remaining four datasets (Nikkei 225,
S&P 500, Shanghai Stock Exchange, and NIFTY 50), further demonstrating the impact of
individual and combined attention components.

Table 25. Individual-attention-component ablation study on Nikkei 225, S&P 500, Shanghai,
and NIFTY 50 stock indices: best-epoch configuration with accuracy, precision, recall, Fl-score,
and AUC. Values are reported up to four decimal places; numbers in brackets denote the 95%
confidence intervals (CIs).

Model Variant Metric Nikkei 225 S&P 500 Shanghai NIFTY 50
Accuracy 0.9028 0.8962 0.8542 0.8892
[0.8890-0.9150] [0.8830-0.9070] [0.8330-0.8730] [0.8700-0.9070]
Precision 0.8960 0.8880 0.8380 0.8780
[0.8800-0.9110] [0.8740-0.9010] [0.8100-0.8640] [0.8560-0.8980]
0.9070 0.9010 0.8720 0.9000
Only Sparse Recall [0.8920-0.9210] [0.8880-0.9140] [0.8480-0.8940] [0.8790-0.9200]
Fl-score 09015 0.8945 0.8540 0.8890
[0.8860-0.9160] [0.8820-0.9060] [0.8330-0.8730] [0.8700-0.9070]
AUC 0.9665 0.9639 0.9410 0.9617
[0.9590-0.9730] [0.9570-0.9710] [0.9320-0.9500] [0.9540-0.9690]
Accuracy 0.9056 0.8940 0.8605 0.8918
[0.8930-0.9180] [0.8810-0.9060] [0.8400-0.8790] [0.8730-0.9100]
Precision 0.9000 0.8850 0.8460 0.8800
[0.8840-0.9160] [0.8710-0.8980] [0.8200-0.8700] [0.8580-0.9000]
0.9100 0.8920 0.8680 0.8960
Only Global Recall [0.8940-0.9240] [0.8780-0.9050] [0.8420-0.8920] [0.8750-0.9150]
Fl-score 0.9048 0.8885 0.8565 0.8880
[0.8900-0.9180] [0.8760-0.9010] [0.8360-0.8760] [0.8690-0.9060]
AUC 0.9689 0.9652 0.9428 0.9629

[0.9620-0.9750]

[0.9580-0.9720]

[0.9340-0.9520]

[0.9550-0.9700]
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Table 25. Cont.
Model Variant Metric Nikkei 225 S&P 500 Shanghai NIFTY 50
Accuracy 0.9040 0.8951 0.8571 0.8880
[0.8910-0.9160] [0.8820-0.9070] [0.8360-0.8760] [0.8690-0.9060]
Precision 0.9045 0.8830 0.8600 0.8760
[0.8880-0.9200] [0.8680-0.8970] [0.8350-0.8840] [0.8540-0.8960]
0.9000 0.8900 0.8480 0.8920
Only Random Recall [0.8840-0.9160] [0.8760-0.9030] [0.8200-0.8750] [0.8710-0.9110]
Fl-score 0.9022 0.8865 0.8539 0.8840
[0.8870-0.9160] [0.8740-0.8990] [0.8330-0.8740] [0.8650-0.9020]
AUC 0.9678 0.9647 0.9402 0.9609
[0.9610-0.9740] [0.9570-0.9720] [0.9310-0.9490] [0.9530-0.9690]
Accuracy 0.9436 0.9291 0.8730 0.8983
[0.9300-0.9550] [0.9190-0.9380] [0.8530-0.8910] [0.8790-0.9160]
Precision 0.9085 0.8956 0.8400 0.8712
[0.8910-0.9260] [0.8820-0.9100] [0.8110-0.8670] [0.8510-0.8910]
SGR-Net Recall 0.8948 0.8830 0.9050 0.9050
[0.8770-0.9130] [0.8690-0.8960] [0.8810-0.9270] [0.8810-0.9270]
Fl-score 0.9016 0.8891 0.8710 0.8710
[0.8890-0.9150] [0.8790-0.8990] [0.8510-0.8910] [0.8510-0.8910]
AUC 0.9876 0.9837 0.9577 0.9685
[0.9820-0.9920] [0.9790-0.9880] [0.9480-0.9660] [0.9590-0.9780]

The Sparse-only configuration consistently underperformed compared with the other
variants. On the Nikkei 225 index, accuracy dropped to 0.9028 (95% CI: 0.8890-0.9150) with
an AUC of 0.9665 (95% CI: 0.9590-0.9730). Similarly, S&P 500 and NIFTY 50 achieved only
0.8962 and 0.8892 accuracy, respectively, both well below that of SGR-Net. Precision values,
such as 0.8380 (95% CI: 0.8100-0.8640) in Shanghai, indicate difficulty in maintaining pre-
dictive stability, while recall appeared inflated, at 0.8720 (95% CI: 0.8480-0.8940), reflecting
overemphasis on one class. Overall, Sparse Attention alone fails to generalize consistently
across diverse indices.

Global-only Attention performed slightly better than Sparse-only configuration but
still lagged behind the integrated model. For instance, Nikkei 225 showed an accuracy
of 0.9056 (95% CI: 0.8930-0.9180) and an AUC of 0.9689 (95% CI: 0.9620-0.9750). On S&P
500, accuracy stagnated at 0.8940 (95% CI: 0.8810-0.9060), while on Shanghali, it remained
weak, at 0.8605 (95% CI: 0.8400-0.8790). Although precision and recall values were more
balanced, such as a recall of 0.9100 (95% CI: 0.8940-0.9240) on Nikkei, the model struggled
with minority classes and produced wider confidence intervals, reflecting instability in
directional forecasting.

Random-only Attention yielded slightly better recall on indices such as S&P 500
(0.8900, 95% CI: 0.8760-0.9030), but its accuracy gains were marginal, with 0.9040 (95% CI:
0.8910-0.9160) on the Nikkei 225 stock index and only 0.8571 (95% CI: 0.8360-0.8760) on
Shanghai. Precision was stronger, such as 0.9045 (95% CI: 0.8880-0.9200) on the Nikkei 225
stock index, but the inconsistent recall on Shanghai (0.8480, 95% CI: 0.8200-0.8750) resulted
in weaker F1-scores. While stochastic attention captures some robustness to noise, it alone
lacks the structure to yield reliable improvements across markets.

The proposed model, SGR-Net, clearly outperformed all ablation configurations.
On Nikkei 225, it achieved 0.9436 accuracy (95% CI: 0.9300-0.9550) and 0.9876 AUC (95% CI:
0.9820-0.9920), representing a substantial margin over the best single-attention-component
baselines. On S&P 500, accuracy rose to 0.9291 (95% CI: 0.9190-0.9380) with an F1-score of
0.8891 (95% CI: 0.8790-0.8990), significantly surpassing the Random and Sparse variants.
Shanghai, the most challenging dataset, still showed strong improvements, with 0.8730
accuracy (95% CI: 0.8530-0.8910) and 0.9577 AUC (95% CI: 0.9480-0.9660). NIFTY 50 simi-
larly reached 0.8983 accuracy (95% CI: 0.8790-0.9160) and 0.9685 AUC (95% CI: 0.9590-0.9780).
In all cases, precision, recall, and F1-score were consistently higher with narrower confidence



Forecasting 2025, 7, 50 31 of 36

intervals, confirming that the synergy of Sparse, Global, and Random Attention mechanisms
drives both predictive strength and robustness across international stock indices.

8.2. Remove-One Ablation Study
8.2.1. Analysis of Remove-One Ablation on DJUS, NYSE AMEX, BSE, DAX, and NASDAQ
Stock Indices

Table 26 presents the remove-one ablation study across the DJUS, NYSE AMEX, BSE,
DAX, and NASDAQ indices, highlighting the contribution of the Sparse, Global, and Ran-
dom Attention components. Across all datasets, the complete SGR-Net consistently outper-
forms its reduced variants. For instance, on the NYSE AMEX index, SGR-Net achieves an
accuracy of 0.9428 (95% CI: 0.9300-0.9560) and an AUC of 0.9824 (95% CI: 0.9760-0.9880),
compared with the 0.9073/0.9691 for the No-Sparse variant and 0.9134/0.9696 for the No-
Random configuration. Similarly, on the BSE index, SGR-Net attains an accuracy of 0.9324
(95% CI: 0.9130-0.9490) and an AUC of 0.9793 (95% CI: 0.9690-0.9880), which are markedly
higher than those of the ablation baselines (0.9073-0.9134 accuracy and 0.9691-0.9696 AUC).
Gains are also observed in precision, recall, and F1-score, where SGR-Net maintains values
above 0.92 across BSE, DAX, and NASDAQ), while one-component ablation configurations
drop to the 0.88-0.90 range.

Table 26. Remove-one ablation study on DJUS, NYSE AMEX, BSE, DAX, and NASDAQ stock indices:
best-epoch configuration with accuracy, precision, recall, F1-score, and AUC. Values are reported up

to four decimal places; numbers in brackets denote the 95% confidence intervals (CIs).

Model Variant Metric DJjUS NYSE AMEX BSE DAX NASDAQ

Accuracy 0.8368 0.9073 0.9073 0.9088 0.8971

[0.8150-0.8570]  [0.8930-0.9210]  [0.8890-0.9240]  [0.8950-0.9210]  [0.8780-0.9140]
Precision 0.8200 0.8900 0.9000 0.8800 0.8850

[0.7900-0.8480]  [0.8700-0.9100]  [0.8750-0.9240]  [0.8600-0.9000]  [0.8600-0.9100]
0.8600 0.9000 0.9150 0.9200 0.9050

No-Sparse (Global + Random)  Recall [0.8300-0.8880]  [0.8800-0.9200]  [0.8920-0.9370]  [0.9000-0.9400]  [0.8800-0.9280]
Fl-score 0.8400 0.8950 0.9070 0.9000 0.8950

[0.8120-0.8660]  [0.8780-0.9110]  [0.8880-0.9250]  [0.8830-0.9160]  [0.8750-0.9130]
AUC 0.9323 0.9691 0.9691 0.9751 0.9671

[0.9160-0.9460]  [0.9630-0.9750]  [0.9590-0.9780]  [0.9690-0.9800]  [0.9600-0.9740]
Accuracy 0.8470 0.9012 0.9012 0.9062 0.8993

[0.8260-0.8660]  [0.8860-0.9150]  [0.8830-0.9180]  [0.8920-0.9190]  [0.8800-0.9160]
Precision 0.8350 0.8850 0.8920 0.8950 0.8900

[0.8050-0.8640]  [0.8640-0.9040]  [0.8660-0.9160]  [0.8740-0.9140]  [0.8650-0.9120]
0.8450 0.8920 0.9050 0.9050 0.9020

No-Global (Sparse + Random)  Recall [0.8140-0.8730]  [0.8710-0.9110]  [0.8820-0.9280]  [0.8840-0.9250]  [0.8760-0.9260]
Fl-score 0.8400 0.8880 0.8980 0.9000 0.8960

[0.8120-0.8660]  [0.8710-0.9040]  [0.8790-0.9160]  [0.8830-0.9160]  [0.8760-0.9140]
AUC 0.9408 0.9692 0.9692 0.9750 0.9671

[0.9250-0.9540]  [0.9630-0.9750]  [0.9590-0.9780]  [0.9690-0.9800]  [0.9600-0.9740]
Accuracy 0.8478 0.9134 0.9134 0.9088 0.9020

[0.8270-0.8670]  [0.8990-0.9260]  [0.8950-0.9290]  [0.8950-0.9210]  [0.8840-0.9180]
Precision 0.8450 0.9020 0.9050 0.9000 0.9030

[0.8160-0.8720]  [0.8800-0.9220]  [0.8800-0.9290]  [0.8800-0.9200]  [0.8780-0.9260]
0.8350 0.8980 0.9100 0.9050 0.8920

No-Random (Sparse + Global)  Recall [0.8040-0.8640]  [0.8770-0.9180]  [0.8860-0.9320]  [0.8840-0.9250]  [0.8660-0.9150]
Fl-score 0.8400 0.9000 0.9070 0.9020 0.8980

[0.8120-0.8660]  [0.8830-0.9150]  [0.8870-0.9250]  [0.8860-0.9160]  [0.8790-0.9150]
AUC 0.9439 0.9696 0.9696 0.9753 0.9699

[0.9280-0.9560]

[0.9640-0.9750]

[0.9600-0.9780]

[0.9700-0.9800]

[0.9620-0.9760]
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Table 26. Cont.
Model Variant Metric DJUS NYSE AMEX BSE DAX NASDAQ
Accuracy 0.8581 0.9428 0.9324 0.9208 0.9364
[0.8370-0.8780] [0.9300-0.9560] [0.9130-0.9490] [0.9070-0.9350] [0.9200-0.9520]
Precision 0.9000 0.9300 0.9280 0.9140 0.9360
[0.8730-0.9250] [0.9120-0.9460] [0.9050-0.9490] [0.8950-0.9310] [0.9120-0.9560]
SGR-Net Recall 0.8800 0.9360 0.9260 0.9180 0.9380
[0.8520-0.9050] [0.9180-0.9520] [0.9030-0.9470] [0.8980-0.9380] [0.9140-0.9590]
Fl-score 0.8900 0.9330 0.9270 0.9160 0.9370
[0.8640-0.9140] [0.9160-0.9490] [0.9070-0.9460] [0.8980-0.9340] [0.9150-0.9560]
AUC 0.9442 0.9824 0.9793 0.9840 0.9888

[0.9320-0.9570]  [0.9760-0.9880]  [0.9690-0.9880]  [0.9780-0.9890]  [0.9820-0.9940]

The DAX index further illustrates the stability of the fused model, with SGR-Net
yielding 0.9208 accuracy (95% CI: 0.9070-0.9350) and 0.9840 AUC (95% CI: 0.9780-0.9890),
compared with 0.9062/0.9750 for No-Global and 0.9088/0.9753 for No-Random. On the
NASDAQ index, SGR-Net achieves the strongest overall results, with 0.9364 accuracy
(95% CI: 0.9200-0.9520) and 0.9888 AUC (95% CI: 0.9820-0.9940), outperforming single-
attention-component variants by approximately 0.03-0.04 in accuracy and 0.015-0.02 in
AUC. Even on the more challenging DJUS index, where overall performance is relatively
lower, SGR-Net secures 0.8581 accuracy (95% CI: 0.8370-0.8780) and 0.9442 AUC (95% CI:
0.9320-0.9570), showing consistent improvements over the reduced variants (0.8368-0.8478
accuracy, 0.9323-0.9439 AUC).

Overall, the results confirm that no single attention mechanism is sufficient: while
Sparse, Global, and Random Attention individually contribute meaningful discriminative
power, their integration in SGR-Net consistently enhances predictive performance. The im-
provements are not only evident in point estimates but also reflected in tighter confidence
intervals, suggesting greater robustness and reliability of the Fused Attention framework
across diverse financial markets.

8.2.2. Analysis of Remove-One Ablation on Nikkei 225, S&P 500, Shanghai, and NIFTY
50 Stock Indices

Table 27 presents the remove-one ablation study across the Nikkei 225, S&P 500, Shang-
hai Stock Exchange, and NIFTY 50 indices, highlighting the contribution of the Sparse,
Global, and Random Attention components. Across the four indices, SGR-Net consis-
tently outperformed the remove-one ablation variants (No-Sparse, No-Global, and No-
Random). On the Nikkei 225 index, SGR-Net achieved the highest accuracy of 0.9436 (95%
CI: 0.9300-0.9550) and an AUC of 0.9876 (95% CI: 0.9820-0.9920), surpassing the reduced
models, which remained in the 0.9006-0.9075 accuracy and 0.9697-0.9737 AUC ranges.
On the S&P 500 index, SGR-Net obtained an accuracy of 0.9291 (95% CI: 0.9190-0.9380)
and an AUC of 0.9837 (95% CI: 0.9790-0.9880), outperforming the ablation configurations
(accuracy 0.8971-0.9020, AUC 0.9671-0.9699).

For the Shanghai index, where overall accuracy scores were lower, SGR-Net still pro-
duced the best results with an accuracy of 0.8730 (95% CI: 0.8530-0.8910) and an AUC of
0.9577 (95% CI: 0.9480-0.9660), compared with 0.8511-0.8711 accuracy and 0.9446-0.9568
AUC for the remove-one models. Similarly, on the NIFTY 50 index, SGR-Net achieved
0.8983 (95% CI: 0.8790-0.9160) accuracy and 0.9685 (95% CI: 0.9590-0.9780) AUC, outper-
forming ablation configurations with accuracy scores of 0.8879-0.8948 and AUC values
of 0.9643-0.9650.
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Table 27. Remove-one ablation study on Nikkei 225, S&P 500, Shanghai, and NIFTY 50 stock indices:
best-epoch configuration with accuracy, precision, recall, F1-score, and AUC. Values are reported up

to four decimal places; numbers in brackets denote the 95% confidence intervals (CIs).

Model Variant Metric Nikkei 225 S&P 500 Shanghai NIFTY 50
Accuracy 0.9006 0.8971 0.8637 0.8914
[0.8890-0.9120] [0.8880-0.9080] [0.8440-0.8820] [0.8720-0.9090]
Precision 0.8950 0.8850 0.8350 0.8700
[0.8780-0.9110] [0.8710-0.8990] [0.8070-0.8610] [0.8450-0.8930]
0.8950 0.9020 0.9050 0.9000
No-Sparse (Global + Random)  Recall [0.8760-0.9130] [0.8890-0.9150] [0.8820-0.9260] [0.8780-0.9200]
Fl-score 0.8950 0.8930 0.8680 0.8850
[0.8800-0.9090] [0.8820-0.9040] [0.8460-0.8880] [0.8670-0.9030]
AUC 0.9697 0.9671 0.9457 0.9667
[0.9640-0.9750] [0.9620-0.9720] [0.9360-0.9550] [0.9590-0.9740]
Accuracy 0.9066 0.8993 0.8511 0.8879
[0.8950-0.9170] [0.8900-0.9100] [0.8310-0.8700] [0.8680-0.9050]
Precision 0.9020 0.8800 0.8660 0.8650
[0.8850-0.9180] [0.8660-0.8940] [0.8390-0.8910] [0.8400-0.8890]
0.9080 0.8920 0.8700 0.8800
No-Global (Sparse + Random)  Recall [0.8900-0.9250] [0.8770-0.9060] [0.8460-0.8930] [0.8560-0.9020]
Fl-score 0.9050 0.8860 0.8680 0.8720
[0.8900-0.9190] [0.8730-0.8980] [0.8470-0.8870] [0.8500-0.8920]
AUC 0.9736 0.9671 0.9446 0.9643
[0.9680-0.9790] [0.9620-0.9720] [0.9350-0.9530] [0.9560-0.9720]
Accuracy 0.9075 0.9020 0.8711 0.8948
[0.8960-0.9180] [0.8920-0.9120] [0.8520-0.8890] [0.8750-0.9130]
Precision 0.9100 0.8880 0.8780 0.8800
[0.8930-0.9260] [0.8740-0.9010] [0.8520-0.9020] [0.8560-0.9030]
0.9050 0.8900 0.8820 0.8840
No-Random (Sparse + Global)  Recall [0.8880-0.9210] [0.8760-0.9030] [0.8580-0.9050] [0.8610-0.9070]
Fl-score 0.9070 0.8890 0.8800 0.8820
[0.8920-0.9210] [0.8760-0.9020] [0.8600-0.9000] [0.8600-0.9020]
AUC 0.9737 0.9699 0.9568 0.9650
[0.9690-0.9790] [0.9630-0.9750] [0.9490-0.9640] [0.9570-0.9730]
Accuracy 0.9436 0.9291 0.8730 0.8983
[0.9300-0.9550] [0.9190-0.9380] [0.8530-0.8910] [0.8790-0.9160]
Precision 0.9200 0.8960 0.8720 0.8850
[0.9020-0.9370] [0.8820-0.9100] [0.8500-0.8920] [0.8640-0.9050]
SGRNet Recall 0.9250 0.8850 0.9070 0.9020
[0.9080-0.9420] [0.8710-0.8980] [0.8830-0.9280] [0.8800-0.9220]
Fl-score 0.9220 0.8900 0.8890 0.8930
[0.9060-0.9380] [0.8780-0.9020] [0.8680-0.9090] [0.8720-0.9120]
AUC 0.9876 0.9837 09577 0.9685
[0.9820-0.9920] [0.9790-0.9880] [0.9480-0.9660] [0.9590-0.9780]

In addition to accuracy and AUC, SGR-Net provided stronger precision, recall, and F1-
scores across all indices, with both higher point estimates and narrower confidence intervals,
while the ablation variants exhibited small drops in these metrics. These results confirm
that the combined use of Sparse, Global, and Random Attention yields a measurable
improvement over removing any single attention component.

9. Conclusions and Future Work

This study introduces a novel Fused Attention model (SGR-Net), which integrates Ran-
dom, Global, and Sparse Attention mechanisms to enhance stock market trend prediction
across multiple indices. Utilizing thirteen technical indicators, the proposed model demon-
strates superior accuracy, AUC, and generalization capability compared with baseline
models such as LSTM, GRU, Vanilla Attention, and Self-Attention. Specifically, the Fused
Attention model achieves AUC improvements of 0.49% to 1.89% and accuracy gains of
1.89% to 6.53%, consistently outperforming other models across the datasets DJUS, NYSE
AMEX, BSE, DAX, NASDAQ, Nikkei, S&P 500, Shanghai Stock Exchange, and NIFTY 50.
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Notably, the model exhibits faster convergence at lower epochs, making it computationally
efficient despite longer training times.

The Fused Attention model effectively captures complex temporal patterns, cross-
variable interdependencies, and nonlinear interactions in financial time-series data. While
conventional models like LSTM and GRU provide stable performance, attention-based
models, particularly the proposed Fused Attention model, demonstrate superior predictive
power and interpretability.

In this study, Sparse Attention reduces computational overhead, Global Attention
captures long-term dependencies, and Random Attention mitigates overfitting, thereby
enhancing the model’s robustness across diverse market conditions.

In subsequent research, we plan to extend the applicability of the Fused Attention
model to different forecasting tasks, such as electricity consumption prediction, FOREX
trend prediction, and wind energy forecasting. Additionally, we aim to incorporate chaotic
time-series modeling to further enhance accuracy and generalization. Furthermore, we will
explore ways to optimize the computational efficiency of the model for real-time applications.
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