TimeGPT’s Potential in Cryptocurrency Forecasting: Efficiency, Accuracy, and Economic Value
Abstract
1. Introduction
2. Related Work
3. Methods
3.1. Deep Learning Models
3.2. Zero-Shot Methods
3.3. Evaluation Metrics
3.4. Diebold–Mariano (DM) Test
3.5. Sharpe Ratio
4. Dataset
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADA | Cardano |
ARB | Arbitrum |
ARIMA | Autoregressive Integrated Moving Average |
ATOM | Cosmos |
AVAX | Avalanche |
BCH | Bitcoin Cash |
BiLSTM | Bi-directional LSTM |
BNB | Binance Coin |
BTC | Bitcoin |
CEX | Centralized Exchange |
DM | Diebold–Mariano |
DOGE | Dogecoin |
DOT | Polkadot |
ETC | Ethereum Classic |
ETH | Ethereum |
GARCH | Generalized Autoregressive Conditional Heteroskedasticity |
GLU | Gated Linear Unit |
GRN | Gated Residual Network |
GRU | Gated Recurrent Unit |
ICP | Internet Computer |
LightGBM | Light Gradient Boosting Machine |
LINK | Chainlink |
LLM | Large Language Model |
LTC | Litecoin |
LSTM | Long Short-Term Memory |
MA | Moving Average |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
MATIC | Polygon |
MLP | Multi-Layer Perceptron |
MSE | Mean Squared Error |
NLP | Natural Language Processing |
OP | Optimism |
PatchTST | Patch Time Series Transformer |
RMSE | Root Mean Squared Error |
SHIB | Shiba Inu |
SOL | Solana |
SR | Sharpe Ratio |
TFT | Temporal Fusion Transformer |
TiDE | Time Series Dense Encoder |
TimesFM | Time Series Foundation Model |
TRX | TRON |
UNI | Uniswap |
XRP | Ripple |
References
- CoinMarketCap. Cryptocurrency Prices, Charts and Market Caps. Available online: https://coinmarketcap.com (accessed on 9 July 2025).
- Stosic, D.; Stosic, D.; Ludermir, T.B.; Stosic, T. Exploring disorder and complexity in the cryptocurrency space. Phys. A Stat. Mech. Its Appl. 2019, 525, 548–556. [Google Scholar] [CrossRef]
- Dimpfl, T.; Peter, F.J. Nothing but noise? Price discovery across cryptocurrency exchanges. J. Financ. Mark. 2021, 54, 100584. [Google Scholar] [CrossRef]
- Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Das, A.; Kong, W.; Leach, A.; Mathur, S.; Sen, R.; Yu, R. Long-term forecasting with tide: Time-series dense encoder. arXiv 2023, arXiv:2304.08424. [Google Scholar] [CrossRef]
- Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A time series is worth 64 words: Long-term forecasting with transformers. arXiv 2022, arXiv:2211.14730. [Google Scholar] [CrossRef]
- Garza, A.; Mergenthaler-Canseco, M. TimeGPT-1. arXiv 2023, arXiv:2310.03589. [Google Scholar] [CrossRef]
- Ansari, A.F.; Stella, L.; Turkmen, C.; Zhang, X.; Mercado, P.; Shen, H.; Shchur, O.; Rangapuram, S.S.; Arango, S.P.; Kapoor, S.; et al. Chronos: Learning the Language of Time Series. arXiv 2024, arXiv:2403.07815. [Google Scholar] [CrossRef]
- García-Medina, A.; Aguayo-Moreno, E. Lstm–garch hybrid model for the prediction of volatility in cryptocurrency portfolios. Comput. Econ. 2024, 63, 1511–1542. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Sun, G.; Miao, S.; Gu, Y.; Zhang, Y.; He, S. A short-term electric load forecast method based on improved sequence-to-sequence gru with adaptive temporal dependence. Int. J. Electr. Power Energy Syst. 2022, 137, 107627. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Sun, J.; Tian, Y.; Huang, Y.; Xue, T.; Li, P.; Liu, Y. The role of transformer models in advancing blockchain technology: A systematic survey. arXiv 2024, arXiv:2409.02139. [Google Scholar] [CrossRef]
- Sun, X.; Liu, M.; Sima, Z. A novel cryptocurrency price trend forecasting model based on LightGBM. Financ. Res. Lett. 2020, 32, 101084. [Google Scholar] [CrossRef]
- Rao, K.R.; Prasad, M.L.; Kumar, G.R.; Natchadalingam, R.; Hussain, M.M.; Reddy, P.C.S. Time-series cryptocurrency forecasting using ensemble deep learning. In Proceedings of the 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT), Kollam, India, 10–11 August 2023; IEEE: New York, NY, USA, 2023; pp. 1446–1451. [Google Scholar] [CrossRef]
- Murray, K.; Rossi, A.; Carraro, D.; Visentin, A. On forecasting cryptocurrency prices: A comparison of machine learning, deep learning, and ensembles. Forecasting 2023, 5, 196–209. [Google Scholar] [CrossRef]
- Belcastro, L.; Carbone, D.; Cosentino, C.; Marozzo, F.; Trunfio, P. Enhancing cryptocurrency price forecasting by integrating machine learning with social media and market data. Algorithms 2023, 16, 542. [Google Scholar] [CrossRef]
- Lee, M.C. Temporal Fusion Transformer-Based Trading Strategy for Multi-Crypto Assets Using On-Chain and Technical Indicators. Systems 2025, 13, 474. [Google Scholar] [CrossRef]
- Wang, M.; Braslavski, P.; Manevich, V.; Ignatov, D.I. Bitcoin Ordinals: Bitcoin Price and Transaction Fee Rate Predictions. IEEE Access 2025, 13, 35478–35489. [Google Scholar] [CrossRef]
- Zhou, W.-X.; Mu, G.-H.; Chen, W.; Sornette, D. Investment strategies used as spectroscopy of financial markets reveal new stylized facts. PLoS ONE 2011, 6, e24391. [Google Scholar] [CrossRef]
- Das, A.; Kong, W.; Sen, R.; Zhou, Y. A decoder-only foundation model for time-series forecasting. In Proceedings of the 41st International Conference on Machine Learning, Vienna, Austria, 21–27 July 2024; PMLR, 2024; pp. 10148–10167. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [Google Scholar] [CrossRef]
- Sharpe, W.F. Mutual fund performance. J. Bus. 1966, 39, 119–138. [Google Scholar] [CrossRef]
- Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data. arXiv 2020, arXiv:2003.06505. [Google Scholar] [CrossRef]
Cryptocurrency | Type | Key Features |
---|---|---|
BTC (Bitcoin) | Digital Currency | First decentralized cryptocurrency using proof-of-work consensus mechanism |
ETH (Ethereum) | Smart Contract Platform | Blockchain platform supporting smart contracts and decentralized applications |
BNB (Binance Coin) | Exchange Token | Native token of Binance exchange ecosystem |
XRP (Ripple) | Payment Network | Digital asset focused on cross-border payments and inter-institutional settlements |
ADA (Cardano) | Smart Contract Platform | Proof-of-stake blockchain platform based on peer-reviewed research |
SOL (Solana) | Smart Contract Platform | High-performance blockchain using proof-of-history consensus mechanism |
DOGE (Dogecoin) | Digital Currency | Litecoin-based cryptocurrency widely used for micropayments |
MATIC (Polygon) | Layer 2 Scaling | Ethereum sidechain and scaling solution |
LTC (Litecoin) | Digital Currency | Bitcoin-based cryptocurrency with faster transaction confirmation times |
DOT (Polkadot) | Interoperability Protocol | Blockchain network supporting multi-chain interoperability |
AVAX (Avalanche) | Smart Contract Platform | High-throughput blockchain platform supporting subnet architecture |
SHIB (Shiba Inu) | Meme Token | Ethereum-based ERC-20 token with community-driven decentralized ecosystem |
TRX (TRON) | Content Distribution Platform | Decentralized content entertainment protocol and blockchain operating system |
UNI (Uniswap) | DeFi Protocol | Governance token of decentralized exchange protocol |
LINK (Chainlink) | Oracle Network | Decentralized oracle network connecting on-chain and off-chain data |
ATOM (Cosmos) | Interoperability Protocol | Blockchain internet protocol supporting cross-chain communication |
ICP (Internet Computer) | Computing Platform | Decentralized computing platform aimed at extending internet functionality |
ETC (Ethereum Classic) | Smart Contract Platform | Original Ethereum chain maintaining immutability principles |
BCH (Bitcoin Cash) | Digital Currency | Bitcoin hard fork with increased block size to improve transaction throughput |
ARB (Arbitrum) | Layer 2 Scaling | Ethereum Layer 2 scaling solution using Optimistic Rollup technology |
OP (Optimism) | Layer 2 Scaling | Ethereum Layer 2 scaling solution focused on optimizing user experience |
Feature Name | Description |
---|---|
Timestamp | Hourly dataset: 16,129 rows, time range 30 May 2025 to 30 June 2025; Daily dataset: 15,373 rows, time range 30 June 2023 to 30 June 2025 |
Symbol | Cryptocurrency trading symbol |
Open | Opening price—price at the beginning of the time period |
High | Highest price—highest trading price within the time period |
Low | Lowest price—lowest trading price within the time period |
Close | Closing price—price at the end of the time period |
Volume | Trading volume—total trading quantity within the time period |
MA_low | Short-term moving average (Daily: 50 periods, Hourly: 24 periods) |
MA_medium | Medium-term moving average (Daily: 100 periods, Hourly: 72 periods) |
MA_high | Long-term moving average (Daily: 200 periods, Hourly: 168 periods) |
Model | MAE | RMSE | MAPE | |||
---|---|---|---|---|---|---|
Day | Hour | Day | Hour | Day | Hour | |
ChronosFineTuned [bolt_small] | 44.4355 | 27.6075 | 47.1465 | 31.1940 | 0.0412 | 0.0133 |
ChronosZeroShot [bolt_base] | 50.0920 | 22.8800 | 61.9419 | 27.2580 | 0.0366 | 0.0081 |
DirectTabular | 440.5986 | 33.6006 | 455.5468 | 34.9648 | 0.1319 | 0.0191 |
NPTS | 1921.6443 | 93.0435 | 1807.7312 | 87.2644 | 0.4618 | 0.0303 |
PatchTST | 201.4190 | 28.3949 | 216.2809 | 32.5368 | 0.0519 | 0.0107 |
RecursiveTabular | 133.9992 | 26.5297 | 162.4802 | 32.9211 | 0.0475 | 0.0204 |
SeasonalNaive | 173.8812 | 28.3835 | 200.4318 | 34.8499 | 0.0462 | 0.0210 |
TemporalFusionTransformer | 280.1931 | 10.4450 | 289.1051 | 12.0893 | 0.0566 | 0.0139 |
TiDE | 246.9273 | 80.0551 | 254.5326 | 82.4366 | 0.0496 | 0.0144 |
TimeGPT_No_var | 139.0260 | 15.6999 | 150.4401 | 18.0468 | 0.0287 | 0.0078 |
TimeGPT_finetune_No_var | 118.9567 | 9.8703 | 128.9118 | 11.0357 | 0.0273 | 0.0069 |
TimeGPT_finetune_var | 141.2775 | 14.1517 | 144.8876 | 16.1225 | 0.0296 | 0.0070 |
TimeGPT_var | 139.3994 | 14.5261 | 143.0434 | 16.7246 | 0.0293 | 0.0070 |
Base Model | TimeGPT Variant | |||
---|---|---|---|---|
no_var | finetune_no_var | finetune_var | var | |
Chronos FT | AI: −4.49% SB: 66.7% SW: 33.3% | AI: 2.59% SB: 66.7% SW: 33.3% | AI: −6.59% SB: 61.9% SW: 33.3% | AI: −5.47% SB: 61.9% SW: 28.6% |
Chronos ZS | AI: −4.90% SB: 42.9% SW: 33.3% | AI: 3.46% SB: 57.1% SW: 33.3% | AI: −3.90% SB: 47.6% SW: 33.3% | AI: −2.93% SB: 47.6% SW: 33.3% |
DirectTabular | AI: 56.52% SB: 85.7% SW: 14.3% | AI: 59.46% SB: 85.7% SW: 14.3% | AI: 56.58% SB: 90.5% SW: 9.5% | AI: 57.02% SB: 90.5% SW: 9.5% |
NPTS | AI: 75.12% SB: 90.5% SW: 9.5% | AI: 76.73% SB: 90.5% SW: 4.8% | AI: 76.64% SB: 90.5% SW: 4.8% | AI: 76.79% SB: 90.5% SW: 4.8% |
PatchTST | AI: 36.99% SB: 85.7% SW: 14.3% | AI: 41.16% SB: 90.5% SW: 9.5% | AI: 35.70% SB: 81.0% SW: 14.3% | AI: 36.42% SB: 81.0% SW: 14.3% |
RecursiveTabular | AI: 34.16% SB: 81.0% SW: 4.8% | AI: 39.09% SB: 95.2% SW: 4.8% | AI: 33.97% SB: 76.2% SW: 14.3% | AI: 34.43% SB: 76.2% SW: 9.5% |
SeasonalNaive | AI: 37.77% SB: 95.2% SW: 4.8% | AI: 41.68% SB: 95.2% SW: 4.8% | AI: 37.41% SB: 90.5% SW: 9.5% | AI: 37.99% SB: 90.5% SW: 9.5% |
TFT | AI: 24.13% SB: 71.4% SW: 19.0% | AI: 28.98% SB: 76.2% SW: 14.3% | AI: 26.10% SB: 66.7% SW: 19.0% | AI: 26.49% SB: 61.9% SW: 19.0% |
TiDE | AI: 36.51% SB: 95.2% SW: 4.8% | AI: 40.60% SB: 95.2% SW: 4.8% | AI: 35.95% SB: 85.7% SW: 9.5% | AI: 36.54% SB: 85.7% SW: 9.5% |
Base Model | TimeGPT Variant | |||
---|---|---|---|---|
no_var | finetune_no_var | finetune_var | var | |
Chronos FT | AI: 21.98% SB: 66.7% SW: 19.0% | AI: 36.27% SB: 85.7% SW: 9.5% | AI: 32.15% SB: 76.2% SW: 23.8% | AI: 31.41% SB: 76.2% SW: 23.8% |
Chronos ZS | AI: -6.41% SB: 42.9% SW: 28.6% | AI: 13.42% SB: 71.4% SW: 19.0% | AI: 11.80% SB: 66.7% SW: 19.0% | AI: 10.65% SB: 61.9% SW: 23.8% |
DirectTabular | AI: 37.09% SB: 81.0% SW: 19.0% | AI: 47.81% SB: 85.7% SW: 14.3% | AI: 48.90% SB: 90.5% SW: 9.5% | AI: 48.24% SB: 90.5% SW: 4.8% |
NPTS | AI: 59.31% SB: 90.5% SW: 9.5% | AI: 63.67% SB: 95.2% SW: 4.8% | AI: 64.44% SB: 95.2% SW: 4.8% | AI: 64.32% SB: 95.2% SW: 4.8% |
PatchTST | AI: 20.09% SB: 71.4% SW: 19.0% | AI: 33.10% SB: 81.0% SW: 14.3% | AI: 32.67% SB: 81.0% SW: 9.5% | AI: 31.97% SB: 85.7% SW: 9.5% |
RecursiveTabular | AI: 48.34% SB: 85.7% SW: 9.5% | AI: 57.78% SB: 90.5% SW: 4.8% | AI: 57.90% SB: 95.2% SW: 4.8% | AI: 57.54% SB: 95.2% SW: 4.8% |
SeasonalNaive | AI: 61.03% SB: 100.0% SW: 0.0% | AI: 67.08% SB: 100.0% SW: 0.0% | AI: 66.02% SB: 100.0% SW: 0.0% | AI: 65.72% SB: 100.0% SW: 0.0% |
TFT | AI: 0.54% SB: 52.4% SW: 33.3% | AI: 15.66% SB: 66.7% SW: 23.8% | AI: 15.41% SB: 52.4% SW: 23.8% | AI: 14.48% SB: 57.1% SW: 28.6% |
TiDE | AI: 29.38% SB: 85.7% SW: 9.5% | AI: 44.01% SB: 90.5% SW: 9.5% | AI: 44.27% SB: 90.5% SW: 9.5% | AI: 43.84% SB: 90.5% SW: 9.5% |
Model | Long-Only Strategy | Long/Short Strategy | ||
---|---|---|---|---|
ETH SR | BTC SR | ETH SR | BTC SR | |
Chronos | −0.5789 | 1.2853 | −0.7639 | 1.0296 |
DirectTabular | 0.7188 | 0.3565 | 1.1915 | −0.9114 |
NPTS | 0.2070 | 0.3846 | 0.4491 | −1.0395 |
PatchTST | −0.8138 | −0.0386 | −1.0519 | −1.3850 |
RecursiveTabular | −0.4732 | 0.5507 | −0.5973 | −0.5343 |
SeasonalNaive | −0.0070 | 1.5388 | 0.0860 | 0.8594 |
timegpt_finetune_no_var | 0.3180 | 0.9732 | 0.6317 | 0.1740 |
timegpt_finetune_var | 2.5438 | 1.2337 | 4.2947 | 0.3506 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Braslavski, P.; Ignatov, D.I. TimeGPT’s Potential in Cryptocurrency Forecasting: Efficiency, Accuracy, and Economic Value. Forecasting 2025, 7, 48. https://doi.org/10.3390/forecast7030048
Wang M, Braslavski P, Ignatov DI. TimeGPT’s Potential in Cryptocurrency Forecasting: Efficiency, Accuracy, and Economic Value. Forecasting. 2025; 7(3):48. https://doi.org/10.3390/forecast7030048
Chicago/Turabian StyleWang, Minxing, Pavel Braslavski, and Dmitry I. Ignatov. 2025. "TimeGPT’s Potential in Cryptocurrency Forecasting: Efficiency, Accuracy, and Economic Value" Forecasting 7, no. 3: 48. https://doi.org/10.3390/forecast7030048
APA StyleWang, M., Braslavski, P., & Ignatov, D. I. (2025). TimeGPT’s Potential in Cryptocurrency Forecasting: Efficiency, Accuracy, and Economic Value. Forecasting, 7(3), 48. https://doi.org/10.3390/forecast7030048