Application of Nanomaterials and Nanotechnology in Food Safety Control

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Quality and Safety".

Deadline for manuscript submissions: closed (31 July 2025) | Viewed by 2593

Special Issue Editor

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
Interests: nano-optical sensor; nondestructive testing; food quality and safety; food flavor; food processing; nano-olfaction

Special Issue Information

Dear Colleagues,

Ensuring food safety is an ongoing global challenge, particularly as the food industry faces growing demands for higher production, extended shelf life, and stringent contamination control. The utilization of nanomaterials and nanotechnology offers novel solutions to enhance the safety of the food supply chain. These solutions facilitate the expedient identification and surveillance of pathogens, contaminants, and quality control during food production and distribution. This Special Issue aims to highlight recent advancements in the use of nanotechnology in food safety, showcasing the application of nanosensors, nanobiosensors, nanocarriers, and nanostructured materials to enhance food safety detection.

 We invite original research articles and reviews on topics such as nanomaterial-based sensors for the detection of pathogens, toxins, allergens, chemical contaminants, and adulterants in food products. Contributions exploring nano-based food packaging technologies, such as antimicrobial nanocoatings and smart packaging with integrated sensing capabilities, are also highly encouraged. Furthermore, the integration of nanotechnology with food safety management systems, such as real-time monitoring of critical control points and the use of nanomaterials for contaminant removal or degradation, will be featured. Manuscripts should present clear, concise, and well-supported findings, with a focus on practical applications and novel methodologies that will drive advancements in food safety practices worldwide.

Dr. Yi Xu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterial-based sensors
  • chemical and microbial contamination in food
  • nanotechnology in food packaging
  • nano-enabled food preservation
  • regulatory and safety concerns of nanomaterials in food
  • integrated nanosensing
  • process monitoring
  • reusable nanotools

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 3642 KB  
Article
An Integrated System Combining Filter-Assisted Sample Preparation and Colorimetric Biosensing for Rapid Pathogen Detection in Complex Food Matrices
by Jihae Lee and Youngsang You
Foods 2025, 14(17), 2986; https://doi.org/10.3390/foods14172986 - 27 Aug 2025
Viewed by 695
Abstract
Climate change increases microbial contamination risks in food, highlighting the need for real-time biosensors. However, food residues often interfere with detection signals, limiting the direct application. An integrated system of filter-assisted sample preparation (FASP) and an immunoassay-based colorimetric biosensor offers the rapid and [...] Read more.
Climate change increases microbial contamination risks in food, highlighting the need for real-time biosensors. However, food residues often interfere with detection signals, limiting the direct application. An integrated system of filter-assisted sample preparation (FASP) and an immunoassay-based colorimetric biosensor offers the rapid and simple on-site detection of foodborne pathogens in complex food matrices. The accuracy and stability of biosensor analysis were ensured via filter-assisted preprocessing, which separated food residues from bacteria. The system was applied to various food matrices, including vegetables, meats, and cheese brine, using samples spiked at contamination levels ranging from 102 to 103 CFU per 25 g, thereby demonstrating broad applicability. Bacterial recovery varied by food matrix, with vegetables showing a 1-log reduction and meats, melon, and cheese brine showing a 2-log reduction relative to the initial inoculum. A detection limit of 101 CFU/mL was achieved for Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in the final preprocessed sample solutions. Sample preparation took under 3 min, and detection was completed within 2 h under stationary conditions. This approach enables rapid pathogen detection in various food matrices without the need for special reading devices, contributing to food safety as a real-time, rapid-response food biosensor. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

29 pages, 4159 KB  
Review
Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives
by Arjun Muthu, Duyen H. H. Nguyen, Chaima Neji, Gréta Törős, Aya Ferroudj, Reina Atieh, József Prokisch, Hassan El-Ramady and Áron Béni
Foods 2025, 14(15), 2657; https://doi.org/10.3390/foods14152657 - 29 Jul 2025
Viewed by 1564
Abstract
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due [...] Read more.
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due to their unique properties, nanomaterials can significantly enhance the functional performance of packaging by boosting mechanical strength, barrier efficiency, antimicrobial activity, and responsiveness to environmental stimuli. This review provides a comprehensive overview of nanomaterials used as smart and sustainable food packaging, focusing on their role in active and intelligent packaging systems. By integrating nanomaterials like metal and metal oxide nanoparticles, carbon-based nanostructures, and nano-biopolymers, packaging can now perform real-time sensing, spoilage detection, and traceability. These systems improve food quality management and supply chain transparency while supporting global sustainability goals. The review also discusses potential risks related to nanomaterials’ migration, environmental impact, and consumer safety, as well as the current regulatory landscape and limitations in industrial scalability. Emphasis is placed on the importance of standardized safety assessments and eco-friendly design to support responsible innovation. Overall, nano-enabled smart packaging represents a promising strategy for advancing food safety and sustainability. Future developments will require collaboration across disciplines and robust regulatory frameworks to ensure the safe and practical application of nanotechnology in food systems. Full article
Show Figures

Graphical abstract

Back to TopTop