Cereals and Cereal-Based Foods: Nutritional, Phytochemical Characterization and Processing Technologies

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Grain".

Deadline for manuscript submissions: closed (5 February 2025) | Viewed by 20709

Special Issue Editors


E-Mail Website
Guest Editor
Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria—Centro di Ricerca Cerealicoltura e Colture Industriali, 71122 Foggia, Italy
Interests: pigmented and non-pigmented cereals; quality; bioactive compounds; cereal processing; biofortification; celiac disease; quality plant biotechnology; breeding for quality
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Research Centre for Cereal and Industrial Crops, CREA, SS 673, Km 25.200, 71122 Foggia, Italy
Interests: new breeding technologies; abiotic stress; functional foods
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cereals are an important source of energy and of compounds with nutritional and healthy properties. To obtain superior end-products, the choice of genetic materials with good endogenous nutritional and phytochemical composition is fundamental.

Other than conventional milling methods, primary processing, such as debranning/pearling, micronization and dry fractionation by air classification, will be applied to produce better-quality and safety flours or to select highly nutritious and/or healthy fractions (high in protein, phenolics, fibre and minerals) to be used as natural ingredients in food formulation. Recently, the increasing demand for proteins has resulted in more cereal products being reformulated to contain pulses protein concentrates or new alternative sources (i.e., edible insect flour) for use as protein-rich ingredients. For such a trend to be sustained, consumer acceptance is one of the most important challenges for food producers.

The optimization of secondary processing, mainly fermentation, baking, extrusion, extrusion cooking, drying and puffing, used to transform cereals into edible products is a further important aspect to be investigated as the level of nutritional and bioactive components can be positively influenced by suitable procedures.

To provide an overview for the development of nutritionally rich and healthy cereal-based foods with satisfactory sensory properties, we invite you to provide contributions for a Special Issue on “Cereals and Cereal-Based Foods: Nutritional, Phytochemical Characterization and Processing Technologies”.  

Dr. Donatella Bianca Maria Ficco
Dr. Grazia Maria Borrelli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cereals and cereal end-products 
  • primary and/or secondary metabolites
  • innovative ingredients
  • cereal-based food processing
  • sensory acceptability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

8 pages, 184 KiB  
Editorial
Cereals and Cereal-Based Foods: Nutritional, Phytochemical Characterization and Processing Technologies
by Grazia Maria Borrelli and Donatella Bianca Maria Ficco
Foods 2025, 14(7), 1234; https://doi.org/10.3390/foods14071234 - 1 Apr 2025
Viewed by 514
Abstract
Cereals have historically been recognized as an important part of the human diet [...] Full article

Research

Jump to: Editorial, Review

19 pages, 2154 KiB  
Article
Prediction of Pasta Colour Considering Traits Involved in Colour Expression of Durum Wheat Semolina
by Antonio Troccoli, Donatella Bianca Maria Ficco, Cristiano Platani, Maria Grazia D’Egidio and Grazia Maria Borrelli
Foods 2025, 14(3), 392; https://doi.org/10.3390/foods14030392 - 24 Jan 2025
Viewed by 1007
Abstract
Colour plays an important role among the quality traits of durum wheat, attracting consumer attention for the pasta market. The traits involved in colour expression are affected by genotype, environment, and processing. In the present study, based on eighteen durum wheat genotypes grown [...] Read more.
Colour plays an important role among the quality traits of durum wheat, attracting consumer attention for the pasta market. The traits involved in colour expression are affected by genotype, environment, and processing. In the present study, based on eighteen durum wheat genotypes grown in eight environments, the effects of different traits related to colour expression were evaluated. Carotenoid pigments, such as lutein and β-carotene content; yellow and brown indices; and lipoxygenase, peroxidase, and polyphenoloxidase activities were analysed in semolina. The effects of processing were evaluated by measuring both the content of carotenoid pigments and colorimetric indices in pasta. The genotype, the environment, and their interaction were significant for all traits, although with a strong prevalence of genotypic effects, except for the brown index. After processing, a decrease in carotenoid content and the yellow index (86.7% and 16.0%, respectively) was observed, while the brown index increased (8.2%). A multiple regression analysis was performed on semolina traits, and the yellow index emerged as the main predictor for pasta colour, strengthening this trait as a fast and reliable criterion of selection. A High-Performance Index tool was also used to identify the genotype and environment that better combine all traits, positively influencing colour expression. All this information can be used in durum wheat breeding programmes for the prediction of pasta colour. Full article
Show Figures

Graphical abstract

14 pages, 5330 KiB  
Article
Mechanical and Thermal Properties and Moisture Sorption of Puffed Cereals Made from Brown Rice, Barley, Adlay, and Amaranth
by Atsuko Takahashi and Keiko Fujii
Foods 2025, 14(2), 189; https://doi.org/10.3390/foods14020189 - 9 Jan 2025
Viewed by 790
Abstract
The moisture sorption, rheological, and glass transition properties of puffed cereals, such as brown rice, barley, adlay, and amaranth, were assessed. The puffed cereals were stored in desiccators until their moisture content reached equilibrium. Moisture sorption isotherms were measured, and monomolecular adsorption moisture [...] Read more.
The moisture sorption, rheological, and glass transition properties of puffed cereals, such as brown rice, barley, adlay, and amaranth, were assessed. The puffed cereals were stored in desiccators until their moisture content reached equilibrium. Moisture sorption isotherms were measured, and monomolecular adsorption moisture content was calculated through Brunauer−Emmett−Teller (BET) analysis. The glass transition temperature (Tg) was determined, and the internal structure was observed using a scanning electron microscope. The rupture force and apparent elastic modulus of puffed cereals decreased with increasing relative humidity (RH). The puffed cereals exhibited ductile fracture ,when the moisture content was >8%. The Tg of puffed cereals with 8% moisture content was approximately 40 °C. It was inferred that puffed cereals demonstrated a crispy texture in the glassy state when stored at <40 °C, but transitioned to a rubbery state at >40 °C, resulting in the loss of crispy texture. Full article
Show Figures

Figure 1

18 pages, 2624 KiB  
Article
The Properties of Damaged Starch Granules: The Relationship Between Granule Structure and Water–Starch Polymer Interactions
by Andrés Gustavo Teobaldi, Esteban Josué Carrillo Parra, Gabriela Noel Barrera and Pablo Daniel Ribotta
Foods 2025, 14(1), 21; https://doi.org/10.3390/foods14010021 - 25 Dec 2024
Viewed by 1207
Abstract
The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule–water interaction was evaluated by [...] Read more.
The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule–water interaction was evaluated by thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). The increase in the level of DS shifted the population of B-type granules towards larger particle diameters and shifted the population of A-type granules towards smaller particle diameters. The appearance of the surface of the starch-damaged granules was rough and flaky (SEM images). Crystallinity reductions were related to higher mechanical damage levels of the granular structure (FT-IR and XRD). Higher DS increased the liquid-water absorption capacity of the granules. Higher DS was associated with increments in less-bound water proportions and reductions in more strongly bound water proportions and related to reductions in the evaporation temperature of these water populations (TGA analyses). Concerning DVS data, the results suggested that the driving force for water–monolayer attachment to the starch granules decreased as DS increased. Therefore, it was suggested that the changes in granule structure led to a weaker water–starch polymer chain interactions due to the increase in DS. The results contribute to a better understanding of the influence of mechanical damage on the starch granular structure, which could be related to the rheological and thermal behavior of starch-based systems with different DS. Full article
Show Figures

Figure 1

21 pages, 1296 KiB  
Article
Screening of Nutritionally Important Components in Standard and Ancient Cereals
by Vesna Dragičević, Milena Simić, Vesna Kandić Raftery, Jelena Vukadinović, Margarita Dodevska, Sanja Đurović and Milan Brankov
Foods 2024, 13(24), 4116; https://doi.org/10.3390/foods13244116 - 19 Dec 2024
Cited by 1 | Viewed by 898
Abstract
Sustainable nutrition and food production involve dietary habits and farming systems which are eco-friendly, created to provide highly nutritious staple crops which could serve as a functional food at the same time. This research sought to provide a comprehensive analysis of whole-grain cereals, [...] Read more.
Sustainable nutrition and food production involve dietary habits and farming systems which are eco-friendly, created to provide highly nutritious staple crops which could serve as a functional food at the same time. This research sought to provide a comprehensive analysis of whole-grain cereals, and some ancient grains toward important macro- (protein), micro-nutrients (mineral elements), and bioactive compounds, such as dietary fiber (arabinoxylan and β-glucan) and antioxidants (phytic acid, total glutathione, yellow pigment, and phenolic compounds) to provide functionality in a sustainable diet. Genotypes, such as durum wheat, triticale, spelt, emmer wheat, and barley, could be considered important and sustainable sources of protein (ranging 11.10–15.00%), as well as prebiotic fiber (β-glucan and arabinoxylan, ranging 0.11–4.59% and 0.51–6.47%, respectively), essential elements, and various antioxidants. Ancient grains can be considered as a source of highly available essential elements. Special attention should be given to the Cimmyt spelt 1, which is high in yellow pigment (5.01 μg·g−1) and has a capacity to reduce DPPH radicals (186.2 µmol TE·g−1), particularly Zn (70.25 mg·kg−1). The presence of phenolics, dihydro-p-coumaric acid, naringin, quercetin, epicatechin in grains of oats (Sopot), as well as catechin in barley grains (Apolon and Osvit) underline their unique chemical profile, making them a desirable genetic pool for breeding genotypes. This research provides a comprehensive assessment of different nutritional aspects of various cereals (some of which are commonly used, while the others are rarely used in diet), indicating their importance as nutraceuticals. It also provides a genetic background that could be translated the genotypes with even more profound effects on human health. Full article
Show Figures

Figure 1

22 pages, 9427 KiB  
Article
Resistant Starch Type 5 Formation by High Amylopectin Starch–Lipid Interaction
by Fernanda G. Castro-Campos, Edgar A. Esquivel-Fajardo, Eduardo Morales-Sánchez, Mario E. Rodríguez-García, Oscar Yael Barron-Garcia, Cristian Felipe Ramirez-Gutierrez, Guadalupe Loarca-Piña and Marcela Gaytán-Martínez
Foods 2024, 13(23), 3888; https://doi.org/10.3390/foods13233888 - 2 Dec 2024
Cited by 1 | Viewed by 2071
Abstract
The formation of resistant starch type 5 (RS5), primarily associated with amylose–lipid complexes, is typically attributed to starches with high-amylose content due to their affinity for lipid interactions. Recently, studies have also investigated the potential of amylopectin-rich starches to form amylopectin–lipid complexes (ALCs), [...] Read more.
The formation of resistant starch type 5 (RS5), primarily associated with amylose–lipid complexes, is typically attributed to starches with high-amylose content due to their affinity for lipid interactions. Recently, studies have also investigated the potential of amylopectin-rich starches to form amylopectin–lipid complexes (ALCs), expanding RS5 sources. This study explores the capacity of waxy corn starch (WS), which is rich in amylopectin, to develop ALCs with oleic acid (10% w/w) under different thermal and mechanical conditions. Specifically, WS was treated at temperatures of 80 °C, 85 °C, and boiling, with stirring times of 0 and 45 min. Results demonstrated significant ALC formation, reaching a peak complexation index (CI) of 59% under boiling conditions with 45 min of stirring. Differential scanning calorimetry (DSC) identified a notable endothermic transition at 110 °C, indicating strong ALC interactions. FTIR spectra further evidenced starch–lipid interactions through bands at 2970 cm−1 and 2888 cm−1. X-ray diffraction (XRD) analysis confirmed the presence of orthorhombic nanocrystals in native WS, with ALC samples exhibiting a V-type diffraction pattern, supporting effective complexation. This study advances knowledge on starch–lipid interactions, suggesting ALCs as a promising RS5 form with potential food industry applications due to its structural resilience and associated health benefits. Full article
Show Figures

Graphical abstract

15 pages, 508 KiB  
Article
Nutritional Composition, Fatty Acid Content, and Mineral Content of Nine Sorghum (Sorghum bicolor) Inbred Varieties
by Paola Pontieri, Jacopo Troisi, Matteo Calcagnile, Fadi Aramouni, Michael Tilley, Dmitriy Smolensky, Marco Guida, Fabio Del Giudice, Antonio Merciai, Iryna Samoylenko, Alberto L. Chessa, Mariarosaria Aletta, Pietro Alifano and Luigi Del Giudice
Foods 2024, 13(22), 3634; https://doi.org/10.3390/foods13223634 - 14 Nov 2024
Viewed by 1454
Abstract
Sorghum is a self-pollinating species belonging to the Poaceae family characterized by a resistance to drought higher than that of corn. Sorghum (Sorghum bicolor L. Moench) has been grown for centuries as a food crop in tropical areas where it has an [...] Read more.
Sorghum is a self-pollinating species belonging to the Poaceae family characterized by a resistance to drought higher than that of corn. Sorghum (Sorghum bicolor L. Moench) has been grown for centuries as a food crop in tropical areas where it has an increasing importance, particularly as a cereal option for people with celiac disease. Over the past fifty years, food-grade varieties and hybrid seeds with white pericarp have been developed, particularly in the United States, to maximize sorghum food quality. Nutrient composition, including moisture, protein, carbohydrates, dietary fiber, fat content, fatty acid composition, and mineral content, was determined for nine inbred varieties with a stabilized food-grade sorghum genotype selected in the USA and grown under typical Mediterranean conditions. Differences in these nutritional components were observed among the varieties considered. Notable differences were found for monounsaturated and polyunsaturated fats, while saturated fatty acids were similar in all varieties. Oleic, linoleic, and palmitic acids were the most abundant fatty acids in all nine lines. Differences were also noted in mineral content, particularly for K, Mg, Al, Mn, Fe, Cu, Zn, and Ba. Enzyme-linked immunosorbent assays (ELISAs) demonstrated the absence of gliadin-like peptides in all the sorghum varieties analyzed, confirming, thus, that these analyzed varieties are safe for consumption by celiac patients. Knowledge of the nutritional values of sorghum lines is relevant for breeding programs devoted to sorghum nutritional content and for beneficial properties to human health. Full article
Show Figures

Graphical abstract

12 pages, 1388 KiB  
Article
Designing of an Oat-Mango Molded Snack with Feasible Nutritional and Nutraceutical Properties
by Yudit Aimee Aviles-Rivera, José Benigno Valdez-Torres, Juan Pedro Campos-Sauceda, José Basilio Heredia, Jeny Hinojosa-Gómez and María Dolores Muy-Rangel
Foods 2024, 13(21), 3402; https://doi.org/10.3390/foods13213402 - 25 Oct 2024
Viewed by 1253
Abstract
In recent years, the market has seen a growing demand for healthy and convenient food options, such as fruit and cereal bars, driven by shifts in eating habits. These changes are primarily attributed to time constraints in meal preparation and the need for [...] Read more.
In recent years, the market has seen a growing demand for healthy and convenient food options, such as fruit and cereal bars, driven by shifts in eating habits. These changes are primarily attributed to time constraints in meal preparation and the need for ready-to-eat foods. Consequently, this has promoted interest in creating a nutritious, high-quality snack combining oats and mango. This study employed a response surface analysis of extreme vertex mixtures, incorporating constraints and three components: oats, mango peel, and dehydrated mango pulp. This resulted in ten different mixtures, each with unique combinations and proportions of the three components. It evaluated the microbiological quality, proximal composition, total phenolic content, tannins, Aw, color, texture, and chemical properties during storage at room temperature. The optimal blend, which demonstrated the best quality characteristics, consisted of 44.38% oats, 5.36% mango peel, and 29.24% mango pulp. This formulation yielded a protein content of 7.1 g, dietary fiber of 20.3 g per 100 g, total phenols of 3.4 mg gallic acid per g, and no pathogenic microorganisms. According to the obtained data, Aw > 0.3, the estimated shelf life could be 12 months at room temperature. Developing a stable oat-mango snack with excellent nutritional, nutraceutical, chemical quality, and microbiological properties is technologically feasible. Full article
Show Figures

Graphical abstract

15 pages, 277 KiB  
Article
Nutritional Traits, Pasting Properties and Antioxidant Profile of Selected Genotypes of Sorghum, Oat and Maize Eligible for Gluten-Free Products
by Laura Gazza, Valeria Menga, Federica Taddei, Francesca Nocente, Elena Galassi, Chiara Natale, Chiara Lanzanova, Silvana Paone and Clara Fares
Foods 2024, 13(7), 990; https://doi.org/10.3390/foods13070990 - 24 Mar 2024
Cited by 2 | Viewed by 1850
Abstract
The technological and nutritional traits of food-grade sorghum hybrids, hulled/naked oat varieties and maize genotypes of different colors were studied for novel and healthier gluten-free foods. Oat genotypes showed the highest protein content, followed by maize and sorghum. The total starch and the [...] Read more.
The technological and nutritional traits of food-grade sorghum hybrids, hulled/naked oat varieties and maize genotypes of different colors were studied for novel and healthier gluten-free foods. Oat genotypes showed the highest protein content, followed by maize and sorghum. The total starch and the total dietary fiber content were quite similar among the three species. Great variation was found in the amylose content, and the highest was in sorghum (27.12%), followed by oat 16.71% and maize 10.59%. Regarding the pasting profile, the rank of Peak Viscosity was sorghum (742.8 Brabender Unit, BU), followed by maize (729.3 BU) and oat (685.9 BU). Oat and sorghum genotypes had similar average breakdown (407.7 and 419.9 BU, respectively) and setback (690.7 and 682.1 BU, respectively), whereas maize showed lower values for both parameters (384.1 BU and 616.2 BU, respectively). The total antioxidant capacity, only in maize, significantly correlated with total flavonoid, phenolic and proanthocyanidin contents, indicating that all the measured compounds contributed to antioxidant capacity. The study indicated the importance of sounding out the nutritional and technological characteristics of gluten-free cereals in order to select suitable cultivars to be processed in different gluten-free foods with better and healthier quality. Full article
17 pages, 2933 KiB  
Article
Germination: A Powerful Way to Improve the Nutritional, Functional, and Molecular Properties of White- and Red-Colored Sorghum Grains
by Cagla Kayisoglu, Ebrar Altikardes, Nihal Guzel and Secil Uzel
Foods 2024, 13(5), 662; https://doi.org/10.3390/foods13050662 - 22 Feb 2024
Cited by 8 | Viewed by 2833
Abstract
This study explored the effects of the germination of red and white sorghum grains (Sorghum bicolor [Moench (L.)]) for up to seven days on various properties of the grain. Germination enriched sorghum’s nutritional and sensory qualities while mitigating existing anti-nutritional factors. The [...] Read more.
This study explored the effects of the germination of red and white sorghum grains (Sorghum bicolor [Moench (L.)]) for up to seven days on various properties of the grain. Germination enriched sorghum’s nutritional and sensory qualities while mitigating existing anti-nutritional factors. The study employed Fourier-transformed infrared spectroscopy (FT-IR) and scanning electron microscopy techniques to support its findings. Germination increased protein and lipid content but decreased starch content. White sorghum grains showed elevated calcium and magnesium but decreased iron, potassium, and zinc. Red sorghum grains showed a consistent decrease in mineral content during germination. Germination also increased fiber and lignin values in both sorghum varieties. The results of the FT-IR analysis demonstrate that germination induced significant changes in the molecular structure of white sorghum samples after 24 h, whereas this transformation was observed in red sorghum samples at four days. Total phenolic content (TPC) in red sorghum ranged from 136.64 ± 3.76 mg GAE/100 g to 379.5 ± 6.92 mg GAE/100 g. After 72 h of germination, the germinated seeds showed a threefold increase in TPC when compared to ungerminated seeds. Similarly, the TPC of white sorghum significantly increased (p < 0.05) from 52.84 ± 3.31 mg GAE/100 g to 151.76 mg GAE/100 g. Overall, during the 7-day germination period, all parameters showed an increase, and the germination process positively impacted the functional properties that contributed to the health benefits of white and red sorghum samples. Full article
Show Figures

Figure 1

17 pages, 2750 KiB  
Article
The Wheat Starchy Endosperm Protein Gradient as a Function of Cultivar and N-fertilization Is Reflected in Mill Stream Protein Content and Composition
by Wisse Hermans, Justine Busschaert, Yamina De Bondt, Niels A. Langenaeken and Christophe M. Courtin
Foods 2023, 12(23), 4192; https://doi.org/10.3390/foods12234192 - 21 Nov 2023
Cited by 4 | Viewed by 1689
Abstract
Within the wheat starchy endosperm, the protein content increases biexponentially from the inner to outer endosperm. Here, we studied how this protein gradient is reflected in mill fractions using three cultivars (Claire, Apache, and Akteur) grown without and with N-fertilization (300 kg N [...] Read more.
Within the wheat starchy endosperm, the protein content increases biexponentially from the inner to outer endosperm. Here, we studied how this protein gradient is reflected in mill fractions using three cultivars (Claire, Apache, and Akteur) grown without and with N-fertilization (300 kg N ha−1). The increasing protein content in successive break fractions was shown to reflect the protein gradient within the starchy endosperm. The increasing protein content in successive reduction fractions was primarily due to more aleurone contamination and protein-rich material being harder to reduce in particle size. The miller’s bran fractions had the highest protein content because of their high sub-aleurone and aleurone content. Additionally, the break fractions were used to deepen our understanding of the protein composition gradient. The gradient in relative gluten content, increasing from inner to outer endosperm, was more pronounced without N-fertilization than with and reached levels up to 87.3%. Regarding the gluten composition gradient, no consistent trends were observed over cultivars when N-fertilization was applied. This could, at least partly, explain why there is no consensus on the gluten composition gradient in the literature. This study aids millers in managing fluctuations in the functionality of specific flour streams, producing specialized flours, and coping with lower-quality wheat. Full article
Show Figures

Graphical abstract

Review

Jump to: Editorial, Research

21 pages, 5628 KiB  
Review
Research Progress on the Quality, Extraction Technology, Food Application, and Physiological Function of Rice Bran Oil
by Wengong Huang, Baohai Liu, Dongmei Shi, Aihua Cheng, Guofeng Chen, Feng Liu, Jiannan Dong, Jing Lan, Bin Hong, Shan Zhang and Chuanying Ren
Foods 2024, 13(20), 3262; https://doi.org/10.3390/foods13203262 - 14 Oct 2024
Cited by 2 | Viewed by 3815
Abstract
Rice bran oil is recommended by the World Health Organization as one of the three major healthy edible oils (along with corn and sesame oils), owing to its unique fatty acid composition and functional components. This study screened, organized, and analyzed a large [...] Read more.
Rice bran oil is recommended by the World Health Organization as one of the three major healthy edible oils (along with corn and sesame oils), owing to its unique fatty acid composition and functional components. This study screened, organized, and analyzed a large number of studies retrieved through keyword searches, and investigated the nutritional value and safety of rice bran oil. It reviews the stability of raw rice bran materials and the extraction and refining process of rice bran oil and discusses food applications and sub-health regulations. Research has found that a delayed stabilization treatment of rice bran seriously affects the overall quality of rice bran oil. Compared with traditional solvent extraction, the new extraction technologies have improved the yield and nutritional value of rice bran oil, but most of them are still in the research stage. Owing to the lack of economical and applicable supporting production equipment, extraction is difficult to industrialize, which is a challenging research area for the future. Rice bran oil has stronger antioxidant stability than other edible oils and is more beneficial to human health; however, its application scope and consumption are limited owing to the product price and lack of understanding. Rice bran oil has significant antioxidant, anti-inflammatory, anti-cancer, hypoglycemic, lipid-lowering, and neuroprotective effects. Further exploratory research on other unknown functions is required to lay a scientific basis for the application and development of rice bran oil. Full article
Show Figures

Figure 1

Back to TopTop