Sustainable Management, Recovery, and Transformation of Food Waste and By-Products

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Security and Sustainability".

Deadline for manuscript submissions: 14 February 2026 | Viewed by 976

Special Issue Editors


E-Mail Website
Guest Editor
Department of Bioscience and Technology for Food, Agriculture and Environment, University of the Studies of Teramo, Via Balzarini 1, 64100 Teramo, Italy
Interests: biogenic amines; biocompounds; by-products valorisation; food waste management technology; quality; safety
Special Issues, Collections and Topics in MDPI journals
School of Biotechnology, East China University of Science and Technology, Shanghai, China
Interests: bioreactors; sustainability; fermentation biotechnology; waste management; genetic engineering; stem cells; metabolic engineering; strain improvement

Special Issue Information

Dear Colleagues,

The industrial processing of food generates residues that pose both environmental and economic challenges. The reuse of food waste contributes to several Sustainable Development Goals outlined in the United Nations Agenda 2030.

Food waste recovery serves multiple purposes, particularly by leveraging its valuable chemical and physical properties. As such, food waste and by-products can act as important sources of key compounds for the biorefinery industry. They can also be effectively used to extract bioactive compounds suitable for applications in functional foods, cosmetics, pharmaceuticals with natural excipients, and even in fields such as environmental remediation.

Converting food waste into biofuels and other high-value products used in everyday life is an area with vast untapped potential. This topic engages experts across a range of disciplines, including biotechnology, industrial engineering, food technology, and organic, inorganic, and analytical chemistry.

For this Special Issue, I invite you to submit original research articles, reviews, and opinion pieces on the broad topic of sustainable utilization and management of food waste and by-products of both plant and animal origin.

Prof. Dr. Maria Martuscelli
Dr. Ali Mohsin
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • food by-products
  • waste valorization
  • waste management
  • food supply chain wastes
  • food processing waste
  • bioactive compounds
  • functional ingredients
  • high-value products
  • nutraceuticals
  • sustainability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 947 KB  
Article
Valorization of Camelina Cake by Fractionation: Characterization of Nutritional and Functional Properties
by Slađana Rakita, Nedeljka Spasevski, Strahinja Vidosavljević, Zorica Tomičić, Ivan M. Savić, Ivana M. Savić Gajić, Olivera Đuragić and Ana Marjanović Jeromela
Foods 2025, 14(19), 3437; https://doi.org/10.3390/foods14193437 - 8 Oct 2025
Viewed by 409
Abstract
The objective of this study was to investigate the effects of fractionation by sieving on cold-pressed camelina cake by separating it into particle-sized fractions and evaluating their nutritional and functional properties. Two Camelina sativa varieties, NS Zlatka and NS Slatka, were mechanically cold-pressed [...] Read more.
The objective of this study was to investigate the effects of fractionation by sieving on cold-pressed camelina cake by separating it into particle-sized fractions and evaluating their nutritional and functional properties. Two Camelina sativa varieties, NS Zlatka and NS Slatka, were mechanically cold-pressed using a screw press then ground into flour. The resulting material was fractionated into three particle-sized fractions, >250 µm, 250–180 µm, and <180 µm, using a laboratory dry sieving system. Both the whole cake and the separated fractions were analyzed for proximate composition, amino acid and fatty acid profiles, tocopherol content, antioxidant potential, color characteristics, and water and oil absorption capacities. The results indicated that the finest cake fraction (<180 µm) from both camelina varieties contained the highest content of protein (~40%), fat (17–19%), essential amino acids (~17 g/100 g), γ-tocopherols (254–266 mg/kg), and the lowest content of condensed tannins (0.5–0.9 g/kg). It also displayed a lighter color and increased yellowness. However, it contained the highest concentrations of glucosinolates (24–27 μmol/g) and phytic acid (38–41 g/kg). In contrast, the coarsest fraction (>250 µm) had increased crude fiber content (13–15%), higher antioxidant potential, the greatest water absorption capacity, and a darker color with a more pronounced reddish color. It also contained the lowest levels of glucosinolates (19–21 μmol/g) and phytic acid (17–20 g/kg). In conclusion, whole camelina cake and its fractions demonstrate considerable potential for use in animal feed and a variety of human nutritional products, due to their favorable nutritional composition and functional properties. Fine fractions with high levels of antinutritional compounds could be used as a substrate for the extraction of bioactive compounds and may find further application in the cosmetic and pharmaceutical industries. Full article
Show Figures

Figure 1

Review

Jump to: Research

29 pages, 3896 KB  
Review
From Waste to Wealth: Unlocking the Potential of Cellulase Characteristics for Food Processing Waste Management
by Muhammad Hammad Hussain, Kamran Ashraf, Redhwan Ebrahim Abdullah Alqudaimi, Maria Martuscelli, Shao-Yuan Leu, Salim-ur Rehman, Muhammad Shahbaz Aslam, Zhanao Li, Adnan Khaliq, Yingping Zhuang, Meijin Guo and Ali Mohsin
Foods 2025, 14(21), 3639; https://doi.org/10.3390/foods14213639 - 24 Oct 2025
Viewed by 292
Abstract
A surge in environmental pollution compels society to utilize food processing wastes to produce valuable compounds. Enzymatic technology, specifically cellulase-mediated hydrolysis, provides an eco-friendly and effective approach for treating food processing leftovers. The main objective of this review is to explore the significant [...] Read more.
A surge in environmental pollution compels society to utilize food processing wastes to produce valuable compounds. Enzymatic technology, specifically cellulase-mediated hydrolysis, provides an eco-friendly and effective approach for treating food processing leftovers. The main objective of this review is to explore the significant contributions of cellulase, both in industrial settings and from an environmental perspective. Therefore, this review covers all the aspects of cellulase structural identification, classification, and evolution to its profound applications. The review initially explores cellulases’ structural and functional characteristics based on the catalytic and cellulose-binding domains and discusses cellulases’ evolutionary origin. A thorough understanding of cellulase properties is essential for overcoming the challenges associated with its commercial production for various applications. In this regard, the optimization for cellulase production through several approaches, including rational design, direct evolution, genetic engineering, and fermentation technology, is also reviewed. In addition, it also underscores the significance of agro-industrial biorefineries, which provide scalable and sustainable solutions to meet future demands for food, chemicals, materials, and fuels. Finally, the last sections of the review solely highlight the potential applications of microbial cellulases in bioremediation. In summary, this review outlines the role of cellulase in efficient valorization aimed at producing multiple bioproducts and the enhancement of environmental remediation efforts. Full article
Show Figures

Figure 1

Back to TopTop