Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2472 KiB  
Article
Recombinase Polymerase Amplification (RPA) Combined with Lateral Flow Immunoassay for Rapid Detection of Salmonella in Food
by Jiali Li, Biao Ma, Jiehong Fang, Antong Zhi, Erjing Chen, Ying Xu, Xiaoping Yu, Chuanxin Sun and Mingzhou Zhang
Foods 2020, 9(1), 27; https://doi.org/10.3390/foods9010027 - 26 Dec 2019
Cited by 75 | Viewed by 10541
Abstract
Salmonella can cause serious foodborne diseases. We have developed a lateral flow immunoassay combined with recombinase polymerase amplification (LFD-RPA) for detection of Salmonella in food. The conserved fragment (fimY) was selected as the target gene. Under an optimal condition (37 °C, [...] Read more.
Salmonella can cause serious foodborne diseases. We have developed a lateral flow immunoassay combined with recombinase polymerase amplification (LFD-RPA) for detection of Salmonella in food. The conserved fragment (fimY) was selected as the target gene. Under an optimal condition (37 °C, 10 min), the sensitivity was 12 colony-forming units (CFU)/mL in a pure culture. Testing with 16 non-Salmonella strains as controls revealed that LFD-RPA was specific to the fimY gene of Salmonella. The established assay could detect Salmonella at concentrations as low as 1.29 × 102 CFU/mL in artificially contaminated samples. This detection was at a slightly higher level than that for a pure bacterial culture. Combined with the test strip reader, the LFD-RPA is a feasible method for quantitative detection of Salmonella based on the test line intensity, which was the ratio for the test line and control line of the reflected light. The method could be a potential point-of-care test in limited resource areas and provides a new approach and technical support for the diagnosis of food safety. Full article
(This article belongs to the Special Issue Advances in Foodborne Pathogen Analysis)
Show Figures

Figure 1

14 pages, 1700 KiB  
Communication
Grape Seeds: Chromatographic Profile of Fatty Acids and Phenolic Compounds and Qualitative Analysis by FTIR-ATR Spectroscopy
by Massimo Lucarini, Alessandra Durazzo, Johannes Kiefer, Antonello Santini, Ginevra Lombardi-Boccia, Eliana B. Souto, Annalisa Romani, Anja Lampe, Stefano Ferrari Nicoli, Paolo Gabrielli, Noemi Bevilacqua, Margherita Campo, Massimo Morassut and Francesca Cecchini
Foods 2020, 9(1), 10; https://doi.org/10.3390/foods9010010 - 21 Dec 2019
Cited by 137 | Viewed by 11683
Abstract
The primary product of the oenological sector is wine. Nonetheless, the grape processing produces large amounts of by-products and wastes, e.g., the grape seeds. In the context of a sustainable production, there is a strong push towards reutilizing these by-products and waste for [...] Read more.
The primary product of the oenological sector is wine. Nonetheless, the grape processing produces large amounts of by-products and wastes, e.g., the grape seeds. In the context of a sustainable production, there is a strong push towards reutilizing these by-products and waste for making useful derivatives since they are rich of bioactive substances with high additional value. As it is true for the wine itself, bringing these by-products derivatives to the market calls for quality measures and analytical tools to assess quality itself. One of the main objectives is to collect analytical data regarding bioactive compounds using potentially green techniques. In the present work, the profile of fatty acids and the main phenolic compounds were investigated by conventional methods. The qualitative analysis of the main functional groups was carried out by Fourier Transform Infrared (FTIR) spectroscopy. Moreover, the successful use of FTIR technique in combination with chemometric data analysis is shown to be a suitable analytical tool for discriminating the grape seeds. Grape seeds of different origin have different content of bioactive substances, making this technique useful when planning to recover a certain substance with specific potential application in health area as food supplement or nutraceutical. For example, Cesanese d’Affile seeds were found to have a rather high fat content with a significant fraction of unsaturated fatty acids. On the other hand, the seeds of Nero d’Avola exhibit the highest amount of phenolic compounds. Full article
(This article belongs to the Special Issue Nutraceuticals in Human Health)
Show Figures

Figure 1

25 pages, 299 KiB  
Article
LC-ESI-QTOF/MS Characterization of Phenolic Compounds from Medicinal Plants (Hops and Juniper Berries) and Their Antioxidant Activity
by Jiafei Tang, Frank R. Dunshea and Hafiz A. R. Suleria
Foods 2020, 9(1), 7; https://doi.org/10.3390/foods9010007 - 20 Dec 2019
Cited by 159 | Viewed by 10383
Abstract
Hops (Humulus lupulus L.) and juniper berries (Juniperus communis L.) are two important medicinal plants widely used in the food, beverage, and pharmaceutical industries due to their strong antioxidant capacity, which is attributed to the presence of polyphenols. The present study [...] Read more.
Hops (Humulus lupulus L.) and juniper berries (Juniperus communis L.) are two important medicinal plants widely used in the food, beverage, and pharmaceutical industries due to their strong antioxidant capacity, which is attributed to the presence of polyphenols. The present study is conducted to comprehensively characterize polyphenols from hops and juniper berries using liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS) to assess their antioxidant capacity. For polyphenol estimation, total phenolic content, flavonoids and tannins were measured, while for antioxidant capacity, three different antioxidant assays including the 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant assay, the 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical cation decolorization assay and the ferric reducing-antioxidant power (FRAP) assay were used. Hops presented the higher phenolic content (23.11 ± 0.03 mg/g dw) which corresponded to its strong antioxidant activity as compared to the juniper berries. Using LC-ESI-QTOF/MS, a total of 148 phenolic compounds were tentatively identified in juniper and hops, among which phenolic acids (including hydroxybenzoic acids, hydroxycinnamic acids and hydroxyphenylpropanoic acids) and flavonoids (mainly anthocyanins, flavones, flavonols, and isoflavonoids) were the main polyphenols, which may contribute to their antioxidant capacity. Furthermore, the HPLC quantitative analysis showed that both samples had a high concentration of phenolic acids and flavonoids. In the HPLC quantification, the predominant phenolic acids in hops and juniper berries were chlorogenic acid (16.48 ± 0.03 mg/g dw) and protocatechuic acid (11.46 ± 0.03 mg/g dw), respectively. The obtained results highlight the importance of hops and juniper berries as a rich source of functional ingredients in different food, beverage, and pharmaceutical industries. Full article
(This article belongs to the Special Issue Extraction and Characterization of Polyphenols from Food Matrix)
Show Figures

Graphical abstract

18 pages, 1023 KiB  
Review
A Review of Factors Affecting Anthocyanin Bioavailability: Possible Implications for the Inter-Individual Variability
by Merve Eda Eker, Kjersti Aaby, Irena Budic-Leto, Suzana Rimac Brnčić, Sedef Nehir El, Sibel Karakaya, Sebnem Simsek, Claudine Manach, Wieslaw Wiczkowski and Sonia de Pascual-Teresa
Foods 2020, 9(1), 2; https://doi.org/10.3390/foods9010002 - 18 Dec 2019
Cited by 148 | Viewed by 12804
Abstract
Anthocyanins are dietary bioactive compounds showing a range of beneficial effects against cardiovascular, neurological, and eye conditions. However, there is, as for other bioactive compounds in food, a high inter and intra-individual variation in the response to anthocyanin intake that in many cases [...] Read more.
Anthocyanins are dietary bioactive compounds showing a range of beneficial effects against cardiovascular, neurological, and eye conditions. However, there is, as for other bioactive compounds in food, a high inter and intra-individual variation in the response to anthocyanin intake that in many cases leads to contradictory results in human trials. This variability could be caused at two levels, one at the bioavailability level and the other at the effect and mechanisms of action. In this context, we have thoroughly reviewed the scientific literature on anthocyanins variability caused by variation in bioavailability. Based on the literature reviewed, we have concluded that the variability in anthocyanins bioavailability might be produced by the lack of homogeneity introduced at three different levels: food matrix and food processing, enzymes involved in anthocyanin metabolism and transport, and anthocyanin metabolizing gut microbiota. However, it should be noted that the literature on anthocyanins bioavailability considering inter or intra-individual variability is still very scarce, which makes it difficult to reach any firm conclusion on the main metabolizing enzymes or bacteria that would be responsible for the variability in anthocyanin bioavailability. Full article
(This article belongs to the Special Issue Phytochemicals in Food and Health)
Show Figures

Figure 1

Back to TopTop