Digital Technologies for Oil Recovery and Sustainability

A special issue of Fluids (ISSN 2311-5521). This special issue belongs to the section "Mathematical and Computational Fluid Mechanics".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 407

Special Issue Editors


E-Mail Website
Guest Editor
Purdue University in Indianapolis, Indianapolis, IN 46202, USA
Interests: cardiovascular hemodynamics; image-based computational fluid dynamics; Lattice Boltzmann Methods (LBM); pore-scale porous media flows
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Petroleum Engineering, Santa Catarina State University, Balneário Camboriú 88336-275, SC, Brazil
Interests: computational fluid dynamics (CFD); lattice Boltzmann method (LBM); thermal modeling; artificial intelligence

Special Issue Information

Dear Colleagues,

This Special Issue, "Digital Technologies for Oil Recovery and Sustainability", will explore the use of advanced digital tools, such as computational fluid dynamics (CFD), artificial intelligence (AI), and machine learning (ML), to enhance oil recovery while promoting sustainability. It will feature research on optimizing fluid flow, real-time reservoir management, enhanced oil recovery (EOR), and minimizing environmental impact. By showcasing the latest innovations, the issue aims to provide a platform for industry professionals and researchers to share knowledge, driving the development of more efficient and environmentally responsible oil recovery practices.

Dr. Huidan (Whitney) Yu
Prof. Dr. Luiz Adolfo Hegele
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fluids is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • digital oil fields
  • computational fluid dynamics (CFD)
  • enhanced oil recovery (EOR)
  • artificial intelligence in oil recovery
  • sustainable oil extraction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 2469 KiB  
Article
A Study on the Optimization and Sensitivity Analysis of Cuttings Transport in Large-Diameter Boreholes
by Qing Wang, Li Liu, Jiawei Zhang, Jianhua Guo, Xiaoao Liu, Guodong Ji, Fei Zhou and Haonan Yang
Fluids 2025, 10(8), 187; https://doi.org/10.3390/fluids10080187 - 22 Jul 2025
Abstract
In the drilling process of ultra-deep wells with large-diameter boreholes, the transport and deposition behavior of cuttings plays a critical role in maintaining wellbore cleanliness and ensuring operational safety. Due to the geometry of enlarged boreholes and their complex annular flow characteristics, conventional [...] Read more.
In the drilling process of ultra-deep wells with large-diameter boreholes, the transport and deposition behavior of cuttings plays a critical role in maintaining wellbore cleanliness and ensuring operational safety. Due to the geometry of enlarged boreholes and their complex annular flow characteristics, conventional single-parameter control methods often fail to achieve effective cuttings transport. This study aims to identify the dominant influencing factors and optimize key parameters by focusing on the cuttings volume fraction as a primary evaluation metric. A numerical simulation approach is employed to systematically investigate the influence of stabilizer geometry and hydraulic parameters. Five variables—drilling fluid velocity, drill pipe rotational speed, number of stabilizers, flow area, and helical angle—are selected for analysis. An initial one-factor sensitivity analysis is conducted to evaluate local impacts and to establish relative sensitivity indices, thereby identifying key variables. A variance-based global sensitivity analysis is further applied to quantify first-order effects, full-order effects, and interaction contributions, revealing nonlinear coupling and synergistic mechanisms. The results indicate that drilling fluid velocity and rotation speed exhibit the most significant first-order influences, while stabilizer-related parameters show strong interaction effects that are often underestimated by traditional methods. Based on these findings, an optimized cuttings transport scheme for large-diameter boreholes is proposed. Additionally, a multi-parameter response model for the cuttings volume fraction is developed using sensitivity-weighted analysis, offering theoretical support and methodological reference for enhancing cuttings transport performance and structural design in large-diameter borehole drilling operations. Full article
(This article belongs to the Special Issue Digital Technologies for Oil Recovery and Sustainability)
Show Figures

Figure 1

Back to TopTop