energies-logo

Journal Browser

Journal Browser

Advances in Green Energy, Environment and Carbon Neutralization 2022–2024

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "B: Energy and Environment".

Deadline for manuscript submissions: closed (15 August 2024) | Viewed by 9679

Special Issue Editors

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
Interests: algae; anaerobic fermentation/digestion; energy and resource recovery; sludge treatment; biological treatment processes; advanced oxidation process
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
Interests: biological wastewater treatment; bioelectrochemical system; emerging containments; anaerobic fermentation/digestion; energy and resource recovery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the rapid development of our society, environmental problems from industrial, life, and agricultural pollutions are becoming more and more serious all over the world. The whole ecological balance of the earth is changing. The massive destruction of the environment has brought about negative effects and even poses a great threat to humanity.

We must face this situation head on and take action to solve our environmental problems. This special issue focuses on how green energy technologies help to reduce environmental pollution and thus influences the sustainable development of the Earth. The purpose of this Special Issue is to bring together innovative academicians and industrial experts in related fields and establish an academic platform on the communication of latest research and developmental activities.

Thank you very much!

Dr. Hongyu Ren
Prof. Dr. Fanying Kong
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • environmental problems
  • environment pollution
  • green energy technologies
  • sustainable development
  • bioenergy
  • energy conversion and management
  • water-energy-food nexus
  • recycling technologies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

4 pages, 147 KiB  
Editorial
Advances in Green Energy, Environment and Carbon Neutralization
by Fanying Kong and Hongyu Ren
Energies 2025, 18(5), 1016; https://doi.org/10.3390/en18051016 - 20 Feb 2025
Cited by 2 | Viewed by 502
Abstract
Population growth and industrialization have led to a rapid increase in the consumption of fossil fuels and resources [...] Full article

Research

Jump to: Editorial

24 pages, 5908 KiB  
Article
Dynamic Simulation of Carbon Emission Peak in City-Scale Building Sector: A Life-Cycle Approach Based on LEAP-SD Model
by Yawei Du, Hongjiang Liu, Tiantian Du, Junyue Liu, Ling Yin and Yang Yang
Energies 2024, 17(21), 5334; https://doi.org/10.3390/en17215334 - 26 Oct 2024
Cited by 3 | Viewed by 1210
Abstract
Systematically predicting carbon emissions in the building sector is crucial for formulating effective policies and plans. However, the timing and potential peak emissions from urban buildings remain unclear. This research integrates socio-economic, urban planning, building technology, and energy consumption factors to develop a [...] Read more.
Systematically predicting carbon emissions in the building sector is crucial for formulating effective policies and plans. However, the timing and potential peak emissions from urban buildings remain unclear. This research integrates socio-economic, urban planning, building technology, and energy consumption factors to develop a LEAP-SD model using Shenzhen as a case study. The model considers the interrelationship between socio-economic development and energy consumption, providing more realistic scenario simulations to predict changes in carbon emissions within the urban building sector. The study investigates potential emission peaks and peak times of buildings under different population and building area development scenarios. The results indicate that achieving carbon peaking by 2030 is challenging under a business as usual (BAU) scenario. However, a 10% greater reduction in energy intensity compared to BAU could result in peaking around 2030. The simulation analysis highlights the significant impact of factors such as population growth rate, per capita residential building area, and energy consumption per unit building area and the need for a comprehensive analysis. It provides more realistic scenario simulations that not only enhance theories and models for predicting carbon emissions but also offer valuable insights for policymakers in establishing effective reduction targets and strategies. Full article
Show Figures

Figure 1

14 pages, 15081 KiB  
Article
Implementation of Regenerative Thermal Oxidation Device Based on High-Heating Device for Low-Emission Combustion
by Hoon-Min Park, Dal-Hwan Yoon, Joon-Seong Lee, Hyun-Min Jung, Dae-Hee Lee, Dong-Hwan Jeon and Tae-Yeung Lim
Energies 2024, 17(20), 5182; https://doi.org/10.3390/en17205182 - 17 Oct 2024
Cited by 1 | Viewed by 1135
Abstract
In this paper, a heating device is implemented by considering two large factors in a 100 cmm RTO design. First, when the combustion chamber is used for a long time with a high temperature of 750–1100 °C depending on the high concentration VOC [...] Read more.
In this paper, a heating device is implemented by considering two large factors in a 100 cmm RTO design. First, when the combustion chamber is used for a long time with a high temperature of 750–1100 °C depending on the high concentration VOC gas capacity, there is a problem that the combustion chamber explodes or the function of the rotary is stopped due to the fatigue and load of the device. To prevent this, the 100 cmm RTO design with a changed rotary position is improved. Second, an RTO design with a high-heating element is implemented to combust VOC gas discharged from the duct at a stable temperature. Through this, low-emission combustion emissions and energy consumption are reduced. By implementing a high heat generation device, the heat storage combustion oxidation function is improved through the preservation of renewable heat. Over 177 h of demonstration time, we improved the function of 100 cm by discharging 99% of VOC’s removal efficiency, 95.78% of waste heat recovery rate, 21.95% of fuel consumption, and 3.9 ppm of nitrogen oxide concentration. Full article
Show Figures

Figure 1

15 pages, 2494 KiB  
Article
Development of an Effective Microalgae Cultivation System Utilizing CO2 in the Air by Injecting CaCO3
by Seonju Pyo, Byung-Sun Yu and Kyudong Han
Energies 2024, 17(17), 4475; https://doi.org/10.3390/en17174475 - 6 Sep 2024
Cited by 1 | Viewed by 1374
Abstract
Recognized as the third-generation biomass of the future, microalgae are increasingly viewed as a promising solution for the sustainable production of biofuels, often referred to as “green gold.” Extensive research is being conducted across the upstream, midstream, and downstream sectors to develop fundamental [...] Read more.
Recognized as the third-generation biomass of the future, microalgae are increasingly viewed as a promising solution for the sustainable production of biofuels, often referred to as “green gold.” Extensive research is being conducted across the upstream, midstream, and downstream sectors to develop fundamental technologies that enable efficient and economical large-scale microalgae cultivation. Recent studies suggest that microalgae-based biofuels have the potential to meet global energy demands. However, challenges such as spatial constraints in site selection and the high cost of transporting CO2—an essential component for pH regulation and photosynthesis—pose obstacles. Here, this study demonstrates that by supplementing air-only medium with CaCO3, Chlorella sorokiniana can effectively utilize airborne CO2 to produce biomass. In laboratory-scale culture conditions supplied only with air, adding 5 mM CaCO3 (pH 7.8) could maintain the pH stably compared to the untreated conditions (pH 9.5) and improved the biomass concentration and lipid content by 17.68-fold and 9.58-fold, respectively. In bench-scale conditions, cultures supplemented with 5 mM CaCO3 exhibited a 9-fold increase in the biomass and a 7.15-fold increase in the lipid concentrations compared to those cultivated with air alone. With microalgae emerging as an essential resource for future generations, cultivation technology utilizing CaCO3 will be a critical technology that enables commercial-scale microalgae cultivation using only air, without artificial CO2 supply facilities. Full article
Show Figures

Figure 1

15 pages, 956 KiB  
Article
The Trend in Environmental Load in the European Union during the Period of 2012–2022
by László Török
Energies 2024, 17(14), 3473; https://doi.org/10.3390/en17143473 - 15 Jul 2024
Cited by 2 | Viewed by 1183
Abstract
The environmental burden is a global problem affecting the European Union. A comprehensive analysis of the environmental burden is essential for creating strategies supporting sustainable economic development. This study attempts to answer the question of why, despite the continuously decreasing energy consumption of [...] Read more.
The environmental burden is a global problem affecting the European Union. A comprehensive analysis of the environmental burden is essential for creating strategies supporting sustainable economic development. This study attempts to answer the question of why, despite the continuously decreasing energy consumption of the EU, the environmental burden of this region is not substantially decreasing. This study provides novel insights into this research area by integrating EU economic dynamics and environmental efficiency indicators. In this study, we used the IPAT method. Before the main analysis, the researcher conducted cross-sectional dependence, slope heterogeneity, and Westerlund cointegration tests using the primary data. Based on the results, the EU member states were classified into clusters, and a linear trend model analysis was carried out. The results show that the total environmental load of the EU did not decrease significantly between 2012 and 2022. The fact that the environmental burden remained at the same level is explained by the fact that there were 16 member countries whose total environmental load increased but whose economic output was lower during this time period. This was offset by 11 member countries with high economic outputs, whose total environmental load decreased. This study proved that GDP growth was the main driving force maintaining the total environmental load at the same level. The EU should encourage member states to continue to implement environmental protection rules to limit and eliminate costly environmental burdens on their societies and economies. This study can be helpful to researchers, political decision-makers, and experts working on environmental public policies for the EU. Full article
Show Figures

Figure 1

13 pages, 3416 KiB  
Article
Effect of Different Preparation Methods on the Stability of Low-Carbon Alcohol Blended Fuels
by Chao Jin, Juntong Dong, Chenyun Ding, Jingjing Hu, Zhenlong Geng, Xiaodan Li, Teng Xu, Guolong Zang and Haifeng Liu
Energies 2024, 17(11), 2796; https://doi.org/10.3390/en17112796 - 6 Jun 2024
Cited by 2 | Viewed by 981
Abstract
The n-butanol/low-carbon alcohol/diesel microemulsion system is a good alternative fuel to diesel. In this study, the microemulsions were formulated in four ways: ultrasonication, vortex oscillation, shaker mixing and spontaneous formation. The results reveal that the ultrasonication method is significantly influenced by temperature. Specifically, [...] Read more.
The n-butanol/low-carbon alcohol/diesel microemulsion system is a good alternative fuel to diesel. In this study, the microemulsions were formulated in four ways: ultrasonication, vortex oscillation, shaker mixing and spontaneous formation. The results reveal that the ultrasonication method is significantly influenced by temperature. Specifically, at 45 °C, the quantity of cosolvent added during the ultrasonic process can be reduced by a maximum of 25% compared to that at 25 °C. However, while the amount of cosolvent required is the lowest at 45 °C, the stability of the emulsion is the poorest. In all cases of this study, the stability of the microemulsion increases when the volume ratio of the lower carbon alcohol exceeds 60%. The lowest amount of co-solvent and high stability were achieved using the shaker mixing method at both 25 °C and 35 °C. Although the quantity of cosolvent required at 45 °C is second only to the lowest, its stability surpasses that of the ultrasonication method. Therefore, it is more effective to choose the shaker mixing method that provides uniform and ordered forces for the preparation of microemulsion liquids. Full article
Show Figures

Figure 1

36 pages, 4694 KiB  
Article
Sustainability and Strategic Assessment of Water and Energy Integration Systems: Case Studies of the Process Industry in Portugal
by Miguel Castro Oliveira and Henrique A. Matos
Energies 2024, 17(1), 195; https://doi.org/10.3390/en17010195 - 29 Dec 2023
Cited by 2 | Viewed by 1742
Abstract
The most recent sustainability policies of each region of the world conjointly define that economic activities shall follow the principles of natural resource use minimisation, as well as eco-efficiency and circular economy promotion, in addition to the specific objectives defined in each policy. [...] Read more.
The most recent sustainability policies of each region of the world conjointly define that economic activities shall follow the principles of natural resource use minimisation, as well as eco-efficiency and circular economy promotion, in addition to the specific objectives defined in each policy. Most recently, a group of researchers has proposed innovative conceptual systems designated Water and Energy Integration Systems (WEIS) for issues related to water and energy use (two prominent categories of natural resources). These are based on engineering projects encompassing a multitude of processes and technologies. In this work, an assessment based on the determination of several sustainability and strategic-aims-related indicators is performed for two WEIS case studies set in the Portuguese process industry (in this case, a ceramic plant). Such an assessment serves as an expansion of previously performed studies on the economic and environmental viability associated with the installation of this type of system with the ultimate goal of proving the effective compliance of water- and energy-use-reduction-related results with sustainability and strategic aims (namely, the ones associated with the most recent policies and aspects associated with the social, economic, and environmental pillars of sustainability). The results for the overall assessment proved that the conceptualised WEIS are robust in terms of eco-efficiency, circular economy potential, and strategic objective achievement potential (with a 6.46% and 4.00% improvement for the aggregated eco-efficiency indicator having been obtained for, respectively, case studies 1 and 2, a null water discharge for both case studies, and a level of 8.58% and 6.69% of recirculated heat over total energy consumption, respectively). The obtained results prove the sustainability promotion effectiveness of the WEIS as conceptual systems. The overall set of indicators defined in this work are part of a methodology that may be used and adapted for further studies considering the innovative WEIS approach, with the specific results obtained in this work presented with the aim of their being used for comparison. Full article
Show Figures

Figure 1

Back to TopTop