The Trend in Environmental Load in the European Union during the Period of 2012–2022
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Testing Data
- Pesaran CD (cross-sectional dependence) test:
- Breusch–Pagan (slope heterogeneity) test:
- Westerlund cointegration test:
3.1.1. Pesaran CD Test Result
3.1.2. Breusch–Pagan Test Result
3.1.3. Westerlund Cointegration Test Result
4. Results
4.1. Results of Changes in Total Environmental Load (I) between 2012 and 2022
4.2. Clusters of Changes in the Total Environmental Load (I) of EU Member States
4.3. Linear Trend Model Analysis
4.4. Analysis of the EU-Level Total Environmental Load (I) and Its Independent Variables
5. Discussion
6. Conclusions and Recommendations
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Berman, B. 3-D printing: The new industrial revolution. Bus. Horiz. 2023, 55, 155–162. [Google Scholar] [CrossRef]
- Duflou, J.R.; Sutherland, J.W.; Dornfeld, D.; Herrmann, C.; Jeswiet, J.; Kara, S.; Hauschild, M.Z.; Kellens, K. Towards energy and resource efficient manufacturing, A processes and systems approach. CIRP Ann.-Manuf. Technol. 2012, 61, 587–609. [Google Scholar] [CrossRef]
- Kiel, D.; Müller, J.M.; Arnold, C.; Voigt, K.I. Sustainable Industrial Value Creation. Benefits and Challenges of Industry 4.0. Int. J. Innov. Manag. 2017, 21, 1740015. [Google Scholar] [CrossRef]
- Stock, T.; Seliger, G. Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP 2016, 40, 536–541. [Google Scholar] [CrossRef]
- Lastauskaite, A.; Krusinskas, R. The Impact of Production Digitalization Investments on European Companies’ Financial Performance. Economies 2024, 12, 138. [Google Scholar] [CrossRef]
- Török, L. The importance of digitalization and robotization in vehicle production in the European Union. Int. Rev. Appl. Sci. Eng. 2022, 14, 125–131. [Google Scholar] [CrossRef]
- Li, P.; Liu, J.; Lu, X.; Xie, Y.; Wang, Z. Digitalization as a Factor of Production in China and the Impact on Total Factor Productivity (TFP). Systems 2024, 12, 164. [Google Scholar] [CrossRef]
- Török, L. The relationship between digital development and economic growth in the European Union. Int. Rev. Appl. Sci. Eng. 2024, 1–15. [Google Scholar] [CrossRef]
- Trauer, J.; Pfingstl, S.; Finsterer, M.; Zimmermann, M. Improving Production Efficiency with a Digital Twin Based on Anomaly Detection. Sustainability 2021, 13, 10155. [Google Scholar] [CrossRef]
- Bánhidi, Z.; Dobos, I. Measurement of digital development with partial orders, Tiered DEA, and cluster analysis for the European Union. Int. Rev. Appl. Sci. Eng. 2023, 14, 392–401. [Google Scholar] [CrossRef]
- Galkovskaya, V.; Volos, M. Economic Efficiency of Implementing Digital Technologies in Energy Power. Sustainability 2022, 14, 15382. [Google Scholar] [CrossRef]
- Jemai, H.; Badri, A.; Fredj, N.B. Towards a better understanding of the complex industrial systems: Case of production systems. Int. Rev. Appl. Sci. Eng. 2023, 14, 383–391. [Google Scholar] [CrossRef]
- Setioningtyas, W.P.; Illés, C.B.; Dunay, A.; Hadi, A.; Wibowo, T.S. Environmental Economics, and the SDGs: A Review of Their Relationships and Barriers. Sustainability 2022, 14, 7513. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, S.; Zhang, N.; Wen, Z.; Xu, M.; Yang, Y. Progress in the Research of Environmental Macroeconomics. Sustainability 2022, 14, 1190. [Google Scholar] [CrossRef]
- Blampied, N. Economic growth, environmental constraints, and convergence: The declining growth premium for developing economies. Ecol. Econ. 2021, 181, 106919. [Google Scholar] [CrossRef]
- Kao, Y.-S.; Nawata, K.; Huang, C.-Y. Systemic Functions Evaluation based Technological Innovation System for the Sustainability of IoT in the Manufacturing Industry. Sustainability 2019, 11, 2342. [Google Scholar] [CrossRef]
- Amitrano, C.C.; Tregua, M.; Russo Spena, T.; Bifulco, F. On Technology in Innovation Systems and Innovation-Ecosystem Perspectives: A Cross-Linking Analysis. Sustainability 2018, 10, 3744. [Google Scholar] [CrossRef]
- Kjøde, S.G. Towards Systemic Innovation Programmes for Sustainability Transitions: A Comparative Study of Two Design-Led Cases. Sustainability 2023, 15, 10182. [Google Scholar] [CrossRef]
- Todorovic, T.; Medic, N.; Delic, M.; Zivlak, N.; Gracanin, D. Performance Implications of Organizational and Technological Innovation: An Integrative Perspective. Sustainability 2022, 14, 2836. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef]
- MacKellar, F.L.; Lutz, W.; Prinz, C.; Goujon, A. Population, households, and CO2 emissions. Popul. Dev. Rev. 1995, 21, 849–865. [Google Scholar] [CrossRef]
- Wernick, I.K.; Waggoner, P.E.; Ausubel, J.H. Searching for leverage to conserve forests: The industrial ecology of wood products in the United States. J. Ind. Ecol. 1997, 1, 125–145. [Google Scholar] [CrossRef]
- Waggoner, P.E.; Jesse, H.A. A Framework for Sustainability Science: A renovated IPAT Identity. Proc. Natl. Acad. Sci. USA 2002, 99, 7860–7865. [Google Scholar] [CrossRef]
- Schulze, P.C. I=PBAT. Ecol. Econ. 2002, 40, 149–150. [Google Scholar] [CrossRef]
- Xu, Z.; Cheng, G.; Qiu, G. ImpACTS equation for sustainability evaluation. J. Geogr. 2005, 2, 198–208. [Google Scholar]
- Li, B.; Liu, X.; Li, Z. Using the STIRPAT model to explore the factors driving regional CO2 emissions: A case of Tianjin, China. Nat. Hazards 2015, 76, 1667–1685. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E. Effects of Population and Affluence on CO2 Emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef]
- Nosheen, M.; Iqbal, J.; Abbasi, M.A. Do technological innovations promote green growth in the European Union? Environ. Sci. Pollut. Res. 2021, 28, 21717–21729. [Google Scholar] [CrossRef]
- Da Silva, B.A.; Constantino, M.; de Oliveira, O.S.; dos Santos, S.A.L.; Tabak, B.M.; da Costa, R.B. New indicator for measuring the environmental sustainability of publicly traded companies: An innovation for the IPAT approach. J. Clean. Prod. 2019, 215, 354–363. [Google Scholar] [CrossRef]
- Szalay, Z.; Csoknyai, T. Life cycle costs and environmental impacts of a nearly zero-energy detached house. Int. Rev. Appl. Sci. Eng. 2013, 4, 163–169. [Google Scholar] [CrossRef]
- Chontanawat, J. Driving Forces of Energy-Related CO2 Emissions Based on Expanded IPAT Decomposition Analysis: Evidence from ASEAN and Four Selected Countries. Energies 2019, 12, 764. [Google Scholar] [CrossRef]
- Eurostat, Population on 1 January. Available online: https://ec.europa.eu/eurostat/databrowser/view/tps00001/default/table?lang=en (accessed on 2 May 2024).
- Eurostat, Real GDP per Capita. Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_08_10/default/table (accessed on 2 May 2024).
- Eurostat, Net Greenhouse Gas Emissions. Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_13_10/default/table?lang=en&category=t_env.t_env_air (accessed on 3 May 2024).
- Wang, K. Analysis of influencing factors of water use in Gansu Province based on IPAT equation China’s Population. Res. Environ. 2011, 21, 148–152. [Google Scholar]
- Wang, Y.G.; Wang, X.; Sun, C.H.; Lu, X.Y. Research progress in the application of IPAT and its extended model. J. App. Ecol. 2015, 26, 949–957. [Google Scholar]
- Lim, Z.-Y.; Ong, L.-Y.; Leow, M.-C. A Review on Clustering Techniques: Creating Better User Experience for Online Roadshow. Future Internet 2021, 13, 233. [Google Scholar] [CrossRef]
- Farahnakian, F.; Nicolas, F.; Farahnakian, F.; Nevalainen, P.; Sheikh, J.; Heikkonen, J.; Raduly-Baka, C. A Comprehensive Study of Clustering-Based Techniques for Detecting Abnormal Vessel Behavior. Remote Sens. 2023, 15, 1477. [Google Scholar] [CrossRef]
- Mohamed Nafuri, A.F.; Sani, N.S.; Zainudin, N.F.A.; Rahman, A.H.A.; Aliff, M. Clustering Analysis for Classifying Student Academic Performance in Higher Education. Appl. Sci. 2022, 12, 9467. [Google Scholar] [CrossRef]
- Pita, A.; Rodriguez, F.J.; Navarro, J.M. Analysis and Evaluation of Clustering Techniques Applied to Wireless Acoustics Sensor Network Data. Appl. Sci. 2022, 12, 8550. [Google Scholar] [CrossRef]
- Kim, B.; Kim, J.; Yi, G. Analysis of Clustering Evaluation Considering Features of Item Response Data Using Data Mining Technique for Setting Cut-Off Scores. Symmetry 2017, 9, 62. [Google Scholar] [CrossRef]
- Kronova, J.; Izarikova, G.; Trebuna, P.; Pekarcikova, M.; Filo, M. Application Cluster Analysis as a Support form Modelling and Digitalizing the Logistics Processes in Warehousing. Appl. Sci. 2024, 14, 4343. [Google Scholar] [CrossRef]
- Balaras, C.A.; Dascalaki, E.G.; Patsioti, M.; Droutsa, K.G.; Kontoyiannidis, S.; Cholewa, T. Carbon and Greenhouse Gas Emissions from Electricity Consumption in European Union Buildings. Buildings 2024, 14, 71. [Google Scholar] [CrossRef]
- Marotta, A.; Porras-Amores, C.; Rodríguez Sánchez, A.; Villoria Sáez, P.; Masera, G. Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm. Appl. Sci. 2023, 13, 8520. [Google Scholar] [CrossRef]
- Bluszcz, A.; Manowska, A.; Mansor, N.S. Assessment of the Potential of European Union Member States to Achieve Climate Neutrality. Sustainability 2024, 16, 1311. [Google Scholar] [CrossRef]
- Hsieh, J.-C.; Lu, C.-C.; Li, Y.; Chiu, Y.-H.; Xu, Y.-S. Environmental Assessment of European Union Countries. Energies 2019, 12, 295. [Google Scholar] [CrossRef]
- Dechezleprêtre, A.; Nachtigall, D.; Venmans, F. The joint impact of the European Union emissions trading system on carbon emissions and economic performance. J. Environ. Econ. Manag. 2023, 118, 102758. [Google Scholar] [CrossRef]
- Bąk, I.; Tarczyńska-Łuniewska, M.; Barwińska-Małajowicz, A.; Hydzik, P.; Kusz, D. Is Energy Use in the EU Countries Moving toward Sustainable Development? Energies 2022, 15, 6009. [Google Scholar] [CrossRef]
- Horobet, A.; Popovici, O.C.; Zlatea, E.; Belascu, L.; Dumitrescu, D.G.; Curea, S.C. Long-Run Dynamics of Gas Emissions, Economic Growth, and Low-Carbon Energy in the European Union: The Fostering Effect of FDI and Trade. Energies 2021, 14, 2858. [Google Scholar] [CrossRef]
- Pata, U.K.; Erdogan, S.; Ozcan, B. Evaluating the role of the share and intensity of renewable energy for sustainable development in Germany. J. Clean. Prod. 2023, 42, 138482. [Google Scholar] [CrossRef]
- Kinnunen, J.; Georgescu, I.; Nica, I. Evaluating the Environmental Phillips Curve Hypothesis in the STIRPAT Framework for Finland. Sustainability 2024, 16, 4381. [Google Scholar] [CrossRef]
- Zimon, G.; Pattak, D.C.; Voumik, L.C.; Akter, S.; Kaya, F.; Walasek, R.; Kochański, K. The Impact of Fossil Fuels, Renewable Energy, and Nuclear Energy on South Korea’s Environment Based on the STIRPAT Model: ARDL, FMOLS, and CCR Approaches. Energies 2023, 16, 6198. [Google Scholar] [CrossRef]
- Wang, P.-C.; Lee, Y.-M.; Chen, C.-Y. Estimation of Resource Productivity and Efficiency: An Extended Evaluation of Sustainability Related to Material Flow. Sustainability 2014, 6, 6070–6087. [Google Scholar] [CrossRef]
- Kim, J.; Lim, H.; Jo, H.-H. Do Aging and Low Fertility Reduce Carbon Emissions in Korea? Evidence from IPAT Augmented EKC Analysis. Int. J. Environ. Res. Public Health 2020, 17, 2972. [Google Scholar] [CrossRef]
Year/ Country | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2022/2012 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BE | 4164 | 4128 | 3987 | 4200 | 4183 | 4206 | 4403 | 4401 | 3764 | 4169 | 4002 | 96 |
BG | 280 | 260 | 269 | 304 | 289 | 312 | 291 | 300 | 247 | 314 | 393 | 140 |
CZ | 1947 | 1813 | 1872 | 2002 | 2107 | 2245 | 2366 | 2432 | 2160 | 2268 | 2214 | 114 |
DK | 2574 | 2636 | 2489 | 2391 | 2582 | 2501 | 2644 | 2444 | 2130 | 2303 | 2257 | 88 |
DE | 30,751 | 31,364 | 30,678 | 31,012 | 31,570 | 31,833 | 31,333 | 29,581 | 25,908 | 27,842 | 27,855 | 91 |
EE | 224 | 265 | 275 | 247 | 290 | 322 | 347 | 274 | 189 | 217 | 227 | 101 |
IE | 2387 | 2423 | 2564 | 3367 | 3410 | 3822 | 4037 | 4073 | 4133 | 4867 | 5178 | 217 |
EL | 1895 | 1735 | 1721 | 1621 | 1551 | 1644 | 1601 | 1505 | 1161 | 1312 | 1453 | 77 |
ES | 7033 | 6443 | 6503 | 6967 | 6847 | 7375 | 7474 | 7152 | 5168 | 5954 | 6465 | 92 |
FR | 14,262 | 14,122 | 13,261 | 13,616 | 13,978 | 14,717 | 14,065 | 14,343 | 11,533 | 12,981 | 12,868 | 90 |
HR | 239 | 221 | 212 | 229 | 242 | 278 | 262 | 273 | 231 | 271 | 317 | 133 |
IT | 12,450 | 10,698 | 10,273 | 10,709 | 10,655 | 11,326 | 10,656 | 10,735 | 8844 | 10,719 | 11,187 | 90 |
CY | 208 | 181 | 188 | 176 | 199 | 237 | 243 | 250 | 211 | 241 | 252 | 121 |
LV | 74 | 88 | 132 | 125 | 109 | 100 | 149 | 125 | 136 | 172 | 208 | 281 |
LT | 114 | 117 | 125 | 145 | 161 | 179 | 195 | 205 | 201 | 221 | 194 | 170 |
LU | 1009 | 974 | 945 | 923 | 939 | 966 | 1001 | 1038 | 837 | 939 | 810 | 80 |
HU | 580 | 571 | 588 | 643 | 676 | 729 | 772 | 808 | 702 | 784 | 782 | 135 |
MT | 58 | 55 | 59 | 49 | 45 | 52 | 56 | 62 | 48 | 55 | 64 | 110 |
NL | 8059 | 8022 | 7908 | 8281 | 8458 | 8490 | 8472 | 8331 | 7047 | 7568 | 7323 | 91 |
AT | 2782 | 2769 | 2578 | 2701 | 2723 | 3028 | 3288 | 3323 | 3025 | 2548 | 2572 | 92 |
PL | 3546 | 3505 | 3596 | 3811 | 4001 | 4349 | 4655 | 4829 | 4718 | 5194 | 5533 | 156 |
PT | 1086 | 1081 | 1300 | 1119 | 1195 | 1715 | 1236 | 1192 | 933 | 937 | 999 | 92 |
RO | 625 | 553 | 503 | 515 | 502 | 594 | 643 | 650 | 553 | 645 | 666 | 107 |
SI | 229 | 227 | 232 | 315 | 345 | 361 | 372 | 342 | 308 | 339 | 337 | 147 |
SK | 478 | 467 | 477 | 510 | 528 | 547 | 594 | 558 | 462 | 554 | 561 | 117 |
FI | 1422 | 1658 | 1454 | 1510 | 1783 | 1822 | 2224 | 1930 | 1561 | 1933 | 1940 | 136 |
SE | 152 | 39 | 39 | 123 | 210 | 428 | 698 | 716 | 528 | 186 | 284 | 187 |
EU | 98,633 | 96,415 | 94,228 | 97,611 | 99,578 | 104,178 | 104,077 | 101,872 | 86,738 | 95,533 | 96,941 | 98 |
Test Method | Number of Data Points | Test Result | Significance Level |
---|---|---|---|
Pesaran CD Test | 297 | 0.2114 | p < 0.05 |
Breusch–Pagan Test | 297 | 0.2687 | p < 0.05 |
Westerlund Cointegration Test | 297 | 0.1223 | p < 0.05 |
Cluster Serial Number | Cluster Countries | Population (P) | GDP per Capita (A) | Pollutants per Capita (T) | Total Environmental Load (I) |
---|---|---|---|---|---|
1. | BE, DK, DE, EL, ES, FR, IT, LU, NL, PT, AT | high | high | average–high | high (except for Luxembourg) |
2. | BG, CZ, EE, HR, CY, HU, MT, RO, SI, SK, FI | average | low–average | average–high | high (except for Cyprus and Malta) |
3. | LT, PL, SE | low–average | average–high | average (except for Sweden) | low |
4. | IE | low | high | high | high |
5. | LV | low | low | average | low |
Country | Intercept (α) | Slope (β) | R-Squared | p-Value |
---|---|---|---|---|
BE | 4164.45 | −15.91 | 0.022 | 0.669 |
BG | 267.09 | 8.73 | 0.420 | 0.079 |
CZ | 1905.18 | 32.45 | 0.715 | 0.004 |
DK | 2590.45 | 18.00 | 0.286 | 0.183 |
DE | 30,876.82 | −307.64 | 0.653 | 0.010 |
EE | 242.09 | −0.55 | 0.001 | 0.970 |
IE | 2797.27 | 273.18 | 0.879 | 0.001 |
EL | 1722.00 | −47.64 | 0.641 | 0.011 |
ES | 6805.36 | −37.27 | 0.224 | 0.250 |
FR | 13,812.09 | −78.18 | 0.498 | 0.045 |
HR | 239.36 | 7.82 | 0.698 | 0.005 |
IT | 11,122.64 | 21.27 | 0.017 | 0.717 |
CY | 197.18 | 6.36 | 0.350 | 0.130 |
LV | 102.45 | 7.45 | 0.572 | 0.024 |
LT | 153.55 | 4.36 | 0.334 | 0.144 |
LU | 978.18 | −10.27 | 0.056 | 0.522 |
HU | 597.82 | 18.64 | 0.780 | 0.001 |
MT | 51.09 | 1.36 | 0.301 | 0.171 |
NL | 8038.55 | −13.64 | 0.047 | 0.556 |
AT | 2782.00 | −18.00 | 0.286 | 0.183 |
PL | 3593.73 | 196.73 | 0.942 | 0.001 |
PT | 1157.27 | −20.36 | 0.134 | 0.412 |
RO | 573.36 | 10.09 | 0.600 | 0.019 |
SI | 280.64 | 5.36 | 0.322 | 0.156 |
SK | 487.36 | 5.91 | 0.562 | 0.026 |
FI | 1564.91 | 39.18 | 0.551 | 0.029 |
SE | 257.55 | 5.91 | 0.102 | 0.469 |
Variables | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|---|
P * | 441 | 441 | 443 | 444 | 445 | 446 | 446 | 447 | 448 | 447 | 447 |
A ** | 25,140 | 25,060 | 25,420 | 25,950 | 26,400 | 27,100 | 27,610 | 28,050 | 26,440 | 28,040 | 28,920 |
T *** | 8.5 | 8.3 | 8.0 | 8.1 | 8.1 | 8.3 | 8.1 | 7.8 | 6.9 | 7.4 | 7.3 |
I **** | 98,633 | 96,415 | 94,228 | 97,611 | 99,578 | 104,178 | 104,077 | 101,872 | 86,738 | 95,533 | 96,941 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Török, L. The Trend in Environmental Load in the European Union during the Period of 2012–2022. Energies 2024, 17, 3473. https://doi.org/10.3390/en17143473
Török L. The Trend in Environmental Load in the European Union during the Period of 2012–2022. Energies. 2024; 17(14):3473. https://doi.org/10.3390/en17143473
Chicago/Turabian StyleTörök, László. 2024. "The Trend in Environmental Load in the European Union during the Period of 2012–2022" Energies 17, no. 14: 3473. https://doi.org/10.3390/en17143473
APA StyleTörök, L. (2024). The Trend in Environmental Load in the European Union during the Period of 2012–2022. Energies, 17(14), 3473. https://doi.org/10.3390/en17143473