Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate
Abstract
1. Introduction
1.1. Global and European Trends in Renewable Energy
1.2. Development of Large-Scale Photovoltaic Farms in Poland and Beyond
2. Materials and Methods
2.1. Designation of the Area for a Photovoltaic Farm
- The type of network to which the energy source would be connected;
- Presence or absence of a Local Spatial Development Plan;
- Land use classification;
- The infrastructure located on the property and the guidelines from the Local Spatial Development Plan;
- The environment and related forms of spatial nature protection;
- Presence of monuments and related conservation or archaeological works;
- The scale of flood risk in a given area;
- Presence of terrain obstacles such as areas of trees, hills, or wetlands.
2.2. Computer Software
2.3. Photovoltaic Farm Variants
2.4. Components of a Photovoltaic Farm
- ▪
- The module efficiency is 21.78% for the variant with a rated power of 470 Wp in STC conditions;
- ▪
- The cell type is monocrystalline N-type semiconductor;
- ▪
- Application of SMBB technology with Hot 2.0;
- ▪
- Increased protection against power loss due to PID process;
- ▪
- Linear efficiency guarantee—in the first year the energy efficiency of the module is 99%, while the annual degradation is on average 0.4%;
- ▪
- The manufacturer provides a 30-year guarantee on linear energy efficiency and a 15-year product guarantee.
2.5. Photovoltaic Farm Configuration
2.6. Economic Analysis Tools
- -
- LCOE indicator (ang. Levelized cost of energy) as the normalized price of producing a unit of energy, taking into account the present value of future cash flows by applying a discount rate:
- -
- Net present value (NPV)—the difference between the present value of cash inflows and the present value of cash outflows in a given period:
- ▪
- Return on investment (ROI)—the ratio of net benefits to initial investment, which measures the profitability of the system. A negative ROI indicates that the system is not profitable.
3. Results
3.1. Analysis of Land Available for Investment
- -
- From the southwest, four trees with the following dimensions: height 20 m, crown width 8 m, trunk thickness 1.1 m;
- -
- From the south and southeast, nine trees with the following dimensions: height 15 m, crown width 6 m, trunk thickness 0.8 m;
- -
- From the north, in the center, 15 trees with the following dimensions: height 10 m, crown width 4 m, trunk thickness 0.5 m.
3.2. Energy Analysis of Photovoltaic Farm Variants
3.3. Economic Analysis of Photovoltaic Farm Variants
3.4. Cross-Regional Validation of Economic and Technical Results
3.5. Sensitivity Analysis of Economic Results
- Discount rate, initially set at 2%, with additional scenarios tested at 1% and 3%.
- Installation costs, analyzed with a +10% increase and −5% decrease relative to the baseline assumptions.
- Electricity selling price, with a baseline value of 0.559 PLN/kWh and scenarios adjusted by +5% and −10%.
3.6. Limitations of the Study and Future Research Directions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cecen, M.; Yavuz, C.; Tirmikci, C.A. Analysis and evaluation of distributed photovoltaic generation in electrical energy production and related regulations of Turkey. Clean Technol. Environ. Policy 2022, 24, 1321–1336. [Google Scholar] [CrossRef]
- Energetyka24. Available online: https://energetyka24.com/oze/analizy-i-komentarze/niemal-13-energii-elektrycznej-na-swiecie-jest-zielona-a-rok-2024-bedzie-przelomowy (accessed on 15 August 2024).
- European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 20 March 2025).
- Ali, T.; Ma, H.; Nahian, A.J. An analysis of the renewable energy technology selection in the southern region of Bangladesh using a hybrid multicriteria decision making (MCDM) method. Int. J. Renew. Energy Res. 2019, 9, 1838–1848. [Google Scholar] [CrossRef]
- Kang, S.W.; Yoon, H.S.; Kim, S.B.; Baatarbileg, A.; Sakong, J.; Lee, G.M. Regional Generation Characteristics of MW Photovoltaic Power Plants in Jeju Island. In Proceedings of the 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA), Al Ain, United Arab Emirates, 25–28 February 2018; pp. 52–55. [Google Scholar]
- Ouali, H.A.L.; Guechchati, R.; Moussaoui, M.A.; Mezrhab, A. Performance of parabolic through solar power plant under weather conditions of the Oujda city in Morocco. Appl. Sol. Energy 2017, 53, 45–52. [Google Scholar] [CrossRef]
- Solar Resource Map 2021 Solargis. Available online: https://solargis.com/resources/free-maps-and-gis-data?locality=europe (accessed on 20 July 2025).
- Fraunhofer ISE. Available online: https://www.ise.fraunhofer.de/en/research-projects/apv-resola.html (accessed on 12 August 2024).
- Tafazoli, M.; Salimi, M.; Zeinalidanaloo, S.; Mashayekh, J.; Amidpour, M. Techno-Economic Analysis of Electricity Generation by Photovoltaic Power Plants Equipped with Trackers in Iran. Energies 2023, 16, 235. [Google Scholar] [CrossRef]
- Abhishek, K.; Bikash, S.; Arvind, R.; Singh, Y.D.; Xiangning, H.; Praveen, K. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Choudhury, B.B.; Dhal, P.R.; Hanspal, M.S. A Comprehensive Review of Multi-criteria Decision-making (MCDM) Toward Sustainable Renewable Energy Development. Spec. Oper. Res. 2025, 2, 268–284. [Google Scholar] [CrossRef]
- Talal, A.; Waleed, A.R.; Khalifa, A.J.; Ammar, A. Solar farms suitability analysis using GIS-Based Analytic Hierarchy Process (AHP) multi-criteria: A case study of Al Duqm—Oman. Renew. Energy 2025, 241, 122295. [Google Scholar]
- Taoufik, M.; Meriem, L.; Ahmed, F. Land suitability analysis for solar farms exploitation using the GIS and Analytic Hierarchy Process (AHP)—A case study of Morocco. Energy Policy J. 2021, 24, 79–96. [Google Scholar] [CrossRef]
- Nasehia, S.; Nohegar, A. Photovoltaic Farm Site Selection using Fuzzy Multi Criteria Evolution with Emphasis on Air Quality and Environmental Conditions. Environ. Energy Econ. Res. 2025, 9, 102. [Google Scholar]
- Gramwzielone. Available online: https://www.gramwzielone.pl/energia-sloneczna/20193166/takie-instalacje-fotowoltaiczne-dominuja-w-polsce (accessed on 17 August 2024).
- Trade. Available online: https://www.trade.gov.pl/aktualnosci/fotowoltaika-w-polsce-wzrost-instalacji-o-41-w-2023-roku/ (accessed on 17 August 2024).
- Inoussah, M.; Ngoh, S.; Mboumboue, E.; Tonga, A.; Lissouck, D. Exergoeconomic analysis of solar photovoltaic power plants: Case study in differents tropicals zone (Maroua and Douala) in Cameroon. Water-Energy Nexus 2023, 10, 100206. [Google Scholar]
- Menéndez, J.; Loredo, J. Economic feasibility of developing large scale solar photovoltaic power plants in Spain. E3S Web Conf. 2019, 122, 02004. [Google Scholar] [CrossRef]
- Carrión, J.A.; Estrella, A.E.; Dols, F.A.; Toro, M.Z.; Rodríguez, N.; Ridao, A.R. Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants. Renew. Sustain. Energy Rev. 2008, 12, 2358–2380. [Google Scholar] [CrossRef]
- Gašparović, I.; Gašparović, M. Determining Optimal Solar Power Plant Locations Based on Remote Sensing and GIS Methods: A Case Study from Croatia. Remote Sens. 2019, 11, 1481–1498. [Google Scholar] [CrossRef]
- Luis-Ruiz, J.M.; Salas-Menocal, B.R.; Pereda-García, R.; Pérez-Álvarez, R.; Sedano-Cibrián, J.; Ruiz-Fernández, C. Optimal Location of Solar Photovoltaic Plants Using Geographic Information Systems and Multi-Criteria Analysis. Sustainability 2024, 16, 2895. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A. Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Appl. Energy 2017, 206, 1225–1240. [Google Scholar] [CrossRef]
- Pour, A.K.; Shahraki, M.R.; Saljooghi, F.H. Evaluation of the Effective Factors in Locating a Photovoltaic Solar Power Plant Using Fuzzy Multi-Criteria Decision-Making Method. J. Renew. Energy Environ. 2024, 8, 16–25. [Google Scholar]
- Ali, S.; Taweekun, J.; Techato, K.; Waewsak, J.; Gyawali, S. GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand. Renew. Energy 2019, 132, 1360–1372. [Google Scholar] [CrossRef]
- AlMallahi, M.N.; Swailmeen, Y.A.; Abdelkareem, M.A.; Olabi, A.G.; Elgendi, M. A path to sustainable development goals: A case study on the thirteen largest photovoltaic power plants. Energy Convers. Manag. 2024, 22, 100553. [Google Scholar]
- Walichnowska, P.; Idzikowski, A. Energy Analysis of the PV Farm with a Capacity of 140 MW. Conf. Qual. Prod. Improv. (CQPI) 2021, 3, 369–376. [Google Scholar]
- Brodziński, Z.; Brodzińska, K.; Szadziun, M. Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland. Energies 2021, 14, 2087. [Google Scholar] [CrossRef]
- Zdyb, A.; Dragan, P.; Jaremek, A. The analysis of the solar power plant performance in temperate climate. J. Civ. Eng. Environ. Archit. 2018, 65, 73–79. [Google Scholar]
- Enerad. Available online: https://enerad.pl/aktualnosci/koszt-budowy-farmy-fotowoltaicznej-100-kw/ (accessed on 10 August 2024).
- Koszty Farmy Fotowoltaicznej—Od Czego Zależą? Available online: https://www.energetyka.plus/ (accessed on 10 March 2025).
- Alashqar, M.; Xue, Y.; Yang, C.; Zhang, X. Comprehensive economic analysis of PV farm—A case study of Alkarsaah PV farm in Qatar. Front. Energy Res. 2022, 10, 987773. [Google Scholar] [CrossRef]
- Makkiabadi, M.; Hoseinzadeh, S.; Taghavirashidizadeh, A.; Soleimaninezhad, M.; Kamyabi, M.; Hajabdollahi, H.; Majidi, N.M.; Piras, G. Performance Evaluation of Solar Power Plants: A Review and a Case Study. Processes 2021, 9, 2253. [Google Scholar] [CrossRef]
- Singh, S.; Alharthi, M.; Anand, A. Performance evaluation and financial viability analysis of grid associated 10 MWP solar photovoltaic power plant at UP India. Sci. Rep. 2022, 12, 22380. [Google Scholar] [CrossRef] [PubMed]
- Yang, R. Economical Analysis of the Influence of Cleaning PV modules on Power Generating Cost of Photovoltaic Power Station. In Proceedings of the 2015 International Symposium on Energy Science and Chemical Engineering (ISESCE), Guangzhou, China, 12–13 December 2015; Atlantis Press: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Iakovleva, E.; Guerra, D.; Tcvetkov, P.; Shklyarskiy, Y. Technical and Economic Analysis of Modernization of Solar Power Plant: A Case Study from the Republic of Cuba. Sustainability 2022, 14, 822. [Google Scholar] [CrossRef]
- Kwaśniewski, D.; Akdeniz, C.; Durmaz, F.; Kömekçi, F. Economic Analysis of the Photovoltaic Installation Use Possibilities in Farms. Agric. Eng. 2020, 24, 47–60. [Google Scholar] [CrossRef]
- Bendaas, I.; Bouchouicha, K.; Semaoui, S.; Razagui, A.; Bouchakour, S.; Boulahchiche, S. Performance evaluation of large-scale photovoltaic power plant in Saharan climate of Algeria based on real data. Energy Sustain. Dev. 2023, 76, 101293. [Google Scholar] [CrossRef]
- Gharibshahian, I.; Sharbati, S.; Oroujia, A. The design and evaluation of a 100 kW Grid Connected Solar Photovoltaic Power Plant in Semnan City. J. Energy Res. 2017, 24, 287–293. [Google Scholar]
- Denholm, P.; Ela, E.; Kirby, B.; Milligan, M. The Role of Energy Storage with Renewable Electricity Generation; Report NREL/TP-6A2-47187; National Renewable Energy Laboratory: Golden, CO, USA, 2010. [Google Scholar]
- Hossain, S.; Madlool, N.A.; Al-Fatlawi, A.W.; Assad, M. High Penetration of Solar Photovoltaic Structure on the Grid System Disruption: An Overview of Technology Advancement. Sustainability 2023, 15, 1174. [Google Scholar] [CrossRef]
- Maghami, M.R.; Pasupuleti, J.; Ekanayake, J. Energy storage and demand response as hybrid mitigation technique for photovoltaic grid connection: Challenges and future trends. J. Energy Storage 2024, 88, 111680. [Google Scholar] [CrossRef]
- Gusain, C.; Tripathi, M.M.; Nangia, U. Study of Meta-heuristic Optimization Methodologies for Design of Hybrid Renewable Energy Systems. Therm. Sci. Eng. Prog. 2023, 39, 101711. [Google Scholar] [CrossRef]
- Jarso, A.K.; Jin, G.; Ahn, J. Hybrid Genetic Algorithm-Based Optimal Sizing of a PV–Wind–Diesel–Battery Microgrid: A Case Study for the ICT Center, Ethiopia. Mathematics 2025, 13, 985. [Google Scholar] [CrossRef]
- Nagadurga, T.; Devarapalli, R.; Knypiński, Ł. Comparison of Meta-Heuristic Optimization Algorithms for Global Maximum Power Point Tracking of Partially Shaded Solar Photovoltaic Systems. Algorithms 2023, 16, 376. [Google Scholar] [CrossRef]
- Regulation of the Minister of Climate and Environment. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU2022000224 (accessed on 23 March 2025).
- Globenergia. Available online: https://globenergia.pl/klasa-gruntu-odrolnienie-i-dzierzawa-gruntu-pod-farme-jak-to-dzisiaj-dziala/ (accessed on 19 August 2024).
- Ongeo. Available online: https://blog.ongeo.pl/grunty-pod-fotowoltaike (accessed on 19 August 2024).
- EnergetykaPlus. Available online: https://www.energetyka.plus/koszty-farmy-fotowoltaicznej-od-czego-zaleza/ (accessed on 19 August 2024).
- Energetyka-Polska. Available online: https://www.energetyka-polska.pl/farma-fotowoltaiczna-jak-zaczac-inwestycja-krok-po-kroku/ (accessed on 19 July 2024).
- Fotowoltaikaonline. Available online: https://fotowoltaikaonline.pl/farma-fotowoltaiczna (accessed on 15 July 2024).
- Żurakowska-Sawa, J.; Gromada, A.; Trocewicz, A.; Wojciechowska, A.; Wysokiński, M.; Zielińska, A. Photovoltaic Farms: Economic Efficiency of Investments in South-East Poland. Energies 2025, 18, 170. [Google Scholar] [CrossRef]
- Božiková, M.; Bilčík, M.; Madola, V.; Szabóová, T.; Kubík, Ľ.; Lendelová, J.; Cviklovič, V. The Effect of Azimuth and Tilt Angle Changes on the Energy Balance of Photovoltaic System Installed in the Southern Slovakia Region. Appl. Sci. 2021, 11, 8998. [Google Scholar] [CrossRef]
- Lebedeva, K.; Borodinecs, A.; Palcikovskis, A.; Wawerka, R.; Skandalos, N. Estimation of LCOE for PV electricity production in the Baltic States—Latvia, Lithuania and Estonia until 2050. Renew. Sustain. Energy Transit. 2025, 7, 100110. [Google Scholar] [CrossRef]
- Zsiborács, H.; Hegedűsné Baranyai, N.; Csányi, S.; Vincze, A.; Pintér, G. Economic Analysis of Grid-Connected PV System Regulations: A Hungarian Case Study. Electronics 2019, 8, 149. [Google Scholar] [CrossRef]
- Kowalczyk, A.M.; Czyża, S. Optimising Photovoltaic Farm Location Using a Capabilities Matrix and GIS. Energies 2022, 15, 6693. [Google Scholar] [CrossRef]
- Spampinato, C.; Valastro, S.; Calogero, G.; Smecca, E.; Mannino, G.; Arena, V.; Balestrini, R.; Sillo, F.; Ciná, L.; Magna, A.L.; et al. Improved radicchio seedling growth under CsPbI3 perovskite rooftop in a laboratory-scale greenhouse for Agrivoltaics application. Nat. Commun. 2025, 16, 2190. [Google Scholar] [CrossRef] [PubMed]
PV Model | Module Nominal Power [Wp] | Module Efficiency [%] | Price of the Module [EUR] | Cost-Effectiveness Ratio [EUR/Wp] |
---|---|---|---|---|
Canadian Solar HiKu CS7L-600 (Kitchener, ON, Canada) | 600 | 21.2 | 189.53 | 0.32 |
LONGi Solar LR4-72HIH-450M (Xi’an, China) | 450 | 20.7 | 138.89 | 0.31 |
Trina Vertex TSM-D19 550 W (Changzhou, China) | 550 | 21.2 | 202.68 | 0.37 |
TW Solar TW-660MCP 660 W (Chengdu, China) | 660 | 21.2 | 208.32 | 0.32 |
TW Solar TW-550MAP 550 W | 550 | 21.3 | 182.02 | 0.33 |
Jinko 470 N-type Tiger Neo 60HL4-(V) Black Frame (Shanghai, China) | 470 | 21.78 | 137.47 | 0.29 |
JA SOLAR JAM60S21-370/MR FULL BLACK (Beijing, China) | 370 | 19.8 | 114.39 | 0.31 |
JA Solar JAM72S20-465/MR | 465 | 20.9 | 159.42 | 0.34 |
Jolywood JW-HD144N-460W N-type Bifacial (Suzhou, China) | 460 | 20.83 | 138.12 | 0.3 |
LONGI LR5-72HIH 9BB Half Cut MONO 530 W | 530 | 20.7 | 179.1 | 0.34 |
Hyundai HiE-S485VI (Seoul, Republic of Korea) | 485 | 20.7 | 221.36 | 0.46 |
Risen RSM144-7-445M (Ningbo, China) | 445 | 20.1 | 168.87 | 0.4 |
Sunpower P3 COM 415 W (San Jose, CA, USA) | 415 | 20.1 | 207.88 | 0.5 |
PV Model | Module Dimensions [mm] | Module Area [m2] | Module Power [Wp] | Area Efficiency Factor [Wp/m2] |
---|---|---|---|---|
Canadian Solar HiKu CS7L-600 | 2172 × 1303 × 35 | 2.830 | 600 | 212.014 |
LONGi Solar LR4-72HIH-450M | 2098 × 1038 × 35 | 2.178 | 450 | 206.612 |
Trina Vertex TSM-D19 550 W | 2384 × 1096 × 35 | 2.613 | 550 | 210.486 |
TW Solar TW-660MCP 660 W | 2384 × 1303 × 35 | 3.106 | 660 | 212.492 |
TW Solar TW-550MAP 550 W | 2278 × 1134 × 35 | 2.583 | 550 | 212.931 |
Jinko 470 N-type Tiger Neo 60HL4-(V) Black Frame | 1903 × 1134 × 30 | 2.158 | 470 | 217.794 |
JA SOLAR JAM60S21-370/MR FULL BLACK | 1776 × 1052 × 35 | 1.868 | 370 | 198.073 |
JA Solar JAM72S20-465/MR | 2112 × 1052 × 35 | 2.222 | 465 | 209.271 |
Jolywood JW-HD144N-460W N-type Bifacial | 2111 × 1046 × 30 | 2.208 | 460 | 208.333 |
LONGI LR5-72HIH 9BB Half Cut MONO 530 W | 2256 × 1133 × 35 | 2.556 | 530 | 207.355 |
Hyundai HiE-S485VI | 2056 × 1140 × 35 | 2.344 | 485 | 206.911 |
Risen RSM144-7-445M | 2108 × 1048 × 40 | 2.209 | 445 | 201.449 |
Sunpower P3 COM 415 W | 2066 × 998 × 40 | 2.062 | 415 | 201.261 |
Group | Module Type | Unit Power [Wp] | Module Orientation | Inclination [°] | Azimuth [°] | Number of Modules [pcs.] | Total Power [kWp] |
---|---|---|---|---|---|---|---|
G1 | Jinko 60HL4-V | 470 | Vertical | 10 | −90 | 6750 | 3172.5 |
G1 | Jinko 60HL4-V | 470 | Vertical | 10 | 90 | 6750 | 3172.5 |
G2 | Jinko 60HL4-V | 470 | Vertical | 10 | −90 | 6750 | 3172.5 |
G2 | Jinko 60HL4-V | 470 | Vertical | 10 | 90 | 6750 | 3172.5 |
G3 | Jinko 60HL4-V | 470 | Vertical | 10 | −90 | 6930 | 3257.1 |
G3 | Jinko 60HL4-V | 470 | Vertical | 10 | 90 | 6930 | 3257.1 |
G4 | Jinko 60HL4-V | 470 | Vertical | 10 | −90 | 6660 | 3130.2 |
G4 | Jinko 60HL4-V | 470 | Vertical | 10 | 90 | 6660 | 3130.2 |
Total | 54,180 | 25,464.6 | |||||
Photovoltaic table type | Number of load-bearing columns | Table length [m] | Bottom height [m] | Top height [m] | Inclination [°] | Number of tables | PV building area [m2] |
JinkoTiger 470 W 3 × 30 WE | 8 | 34.89 | 2.46 | 3.46 | 10 | 301 | 119,567.82 |
Item Name | Unit | Quantity | Unit Price [EUR] | Total Price [EUR] | |
---|---|---|---|---|---|
1 | Construction of MV/HV 15/110 kV station | - | - | - | 1,733,903.6 |
2 | SMA Sunny Central 4600 UP + MVPS (Rocklin, CA, USA) | pcs | 4 | 344,946.63 | 1,379,786.52 |
3 | Module JinkoSolar Tiger Neo Typ N 60HL4-(V) 470 W | pcs | 54,180 | 137.47 | 7,448,124.5 |
4 | PV module support structure | pcs | 301 | 3413.72 | 1,027,529.72 |
5 | DC-DC Distribution Boards Weidmueller (Huntingwood, Australia) | pcs | 88 | 1286.21 | 113,186.48 |
6 | Preparation of the ground within the PV development area | m2 | 119,567.82 | 1.1 | 131,524.6 |
7 | Cable trench DC | m | 4438 | 36.41 | 161,587.58 |
8 | Cable trench AC | m | 1000 | 36.41 | 36,410 |
9 | Construction of a paved access road | m2 | 2416 | 19.27 | 46,556.32 |
10 | Installation of a lightning protection system | m2 | 119,567.82 | 2.31 | 276,201.66 |
11 | Construction of a fence around the farm area | m2 | 119,567.82 | - | 60,355.63 |
Total | 14,670,764.2 |
Tilt Angle and Geographic Orientation | 10° S | 15° S | 20° S | 25° S | 30° S | 10° EW | 20° EW | 30° EW |
---|---|---|---|---|---|---|---|---|
Installed power [MWp] | 26.353 | 21.531 | 17.343 | 14.086 | 12.732 | 25.465 | 27.072 | 28.680 |
Building area [m2] | 124,349 | 99,647 | 78,086 | 61,168 | 52,833 | 119,568 | 121,274 | 118,402 |
Distance between rows of modules [m] | 1.60 | 3.34 | 5.97 | 8.32 | 9.84 | 2.5 | 2.5 | 2.5 |
Number of inverter–transformer stations | 5 | 4 | 3 | 2 | 2 | 4 | 4 | 4 |
Loss due to non-optimal module tilt angle [%] | 11.2 | 8.0 | 5.3 | 3.1 | 1.5 | 19.2 | 20.1 | 21.7 |
Loss due to inverter oversizing [%] | 0.1 | 0.3 | 1.6 | 7.3 | 4.8 | 0.9 | 2.1 | 5.0 |
Energy extracted [MWh/year] | 28,016.6 | 23,644.9 | 19,482.3 | 15,229.4 | 14,406.8 | 24,738. 3 | 25,324.6 | 25,084.2 |
PR factor [-] | 0.8338 | 0.8332 | 0.8300 | 0.7829 | 0.8078 | 0.8367 | 0.8206 | 0.7877 |
Surface production coefficient [kWh/m2] | 225.31 | 237.29 | 249.49 | 248.99 | 272.68 | 206.90 | 208.82 | 211.86 |
Effective radiation intensity [kWh/m2] | 1200 | 1244 | 1282 | 1311 | 1326 | 1101 | 1072 | 1016 |
Production efficiency [kWh/kWp] | 1063 | 1098 | 1123 | 1081 | 1132 | 971 | 935 | 875 |
Standardized production [kWh/kWp/day] | 2.90 | 3.00 | 3.07 | 2.95 | 3.09 | 2.65 | 2.56 | 2.39 |
Normalized losses of a PV farm [kWh/kWp/day] | 0.46 | 0.48 | 0.50 | 0.63 | 0.60 | 0.41 | 0.46 | 0.55 |
Loss due to oversizing of inverter power [%] | 0.00 | 0.04 | 0.70 | 5.48 | 3.01 | 0.28 | 1.06 | 2.57 |
Loss due to going outside the min. voltage range of the inverter | 0.62 (818) (warnings) | 0.71 (846) | 0.54 (730) | 0.15 (409) | 0.33 (587) | 0.50 (727) | 0.43 (602) | 0.29 (576) |
Total Investment Cost | Cost of Building 1 MWp | NPV | LCOE | Estimated Payback Period | |
---|---|---|---|---|---|
Variant | [EUR] | [EUR/MWp] | [EUR] | [EUR/kWh] | [year] |
10° S | 17,106,774.1 | 649,139.5 | 90,413,916.1 | 0.112 | 9.3 |
15° S | 14,302,455.7 | 664,272.7 | 79,723,024.9 | 0.1 | 8.7 |
20° S | 11,713,635.2 | 675,410 | 63,511,868.7 | 0.109 | 9.0 |
25° S | 9,631,195.0 | 683,742.4 | 50,486,999.3 | 0.112 | 9.4 |
30° S | 9,028,443.6 | 709,114.3 | 46,696,340 | 0.112 | 9.3 |
10° EW | 17,357,573.3 | 681,624.7 | 74,849,229.1 | 0.125 | 10.7 |
20° EW | 17,869,642 | 660,078.4 | 75,793,745.3 | 0.126 | 10.8 |
30° EW | 18,478,728.9 | 644,329.6 | 74,157,678 | 0.132 | 11.3 |
IRR | ROI | Share of Net Profit in Total Revenue | Share of Land Lease Rent in the Revenues Obtained | |
---|---|---|---|---|
Variant | [%] | [%] | [%] | [%] |
10° S | 77.89 | 429.7 | 54.10 | 1.55 |
15° S | 73.03 | 453.2 | 56.93 | 1.85 |
20° S | 59.01 | 440.8 | 55.32 | 2.24 |
25° S | 47.83 | 426.2 | 55.31 | 2.78 |
30° S | 46.17 | 420.5 | 55.32 | 3.00 |
10° EW | 65.03 | 350.6 | 50.83 | 1.76 |
20° EW | 65.52 | 344.8 | 50.32 | 1.72 |
30° EW | 62.57 | 326.3 | 49.16 | 1.72 |
Variant | 10° S | 15° S | 20° S | 25° S | 30° S | 10° EW | 20° EW | 30° EW | |
---|---|---|---|---|---|---|---|---|---|
No Change Discount rate = 2% | LCOE [EUR/kWh] | 0.112 | 0.1 | 0.109 | 0.112 | 0.112 | 0.125 | 0.126 | 0.132 |
ROI [%] | 429.7 | 453.2 | 440.9 | 426.2 | 420.5 | 350.6 | 344.8 | 326.3 | |
IRR [%] | 77.89 | 73.03 | 59.01 | 47.83 | 46.17 | 65.03 | 65.52 | 62.57 | |
Payback period | 9.3 | 8.7 | 9.0 | 9.4 | 9.3 | 10.7 | 10.8 | 11.3 | |
Change +1% Discount rate = 3% | LCOE [EUR/kWh] | 0.109 | 0.097 | 0.106 | 0.11 | 0.11 | 0.121 | 0.123 | 0.128 |
ROI [%] | 370.3 | 390.6 | 379.2 | 365.5 | 360.8 | 302.2 | 297.4 | 281.2 | |
IRR [%] | 77.89 | 73.03 | 59.01 | 47.83 | 46.17 | 65.03 | 65.52 | 62.57 | |
Payback period | 9.6 | 9.1 | 9.3 | 9.7 | 9.6 | 11.2 | 11.3 | 11.8 | |
Change −1% Discount rate = 1% | LCOE [EUR/kWh] | 0.116 | 0.104 | 0.113 | 0.115 | 0.115 | 0.130 | 0.132 | 0.137 |
ROI [%] | 500.8 | 528.2 | 514.8 | 499.1 | 492.2 | 408.5 | 401.6 | 380.1 | |
IRR [%] | 77.89 | 73.03 | 59.01 | 47.83 | 46.17 | 65.03 | 65.52 | 62.57 | |
Payback period | 8.9 | 8.4 | 8.6 | 9.0 | 8.9 | 10.2 | 10.3 | 10.8 |
Variant | 10° S | 15° S | 20° S | 25° S | 30° S | 10° EW | 20° EW | 30° EW | |
---|---|---|---|---|---|---|---|---|---|
No Change Installation costs = 100% | LCOE [EUR/kWh] | 0.112 | 0.1 | 0.109 | 0.112 | 0.112 | 0.125 | 0.126 | 0.132 |
ROI [%] | 77.89 | 453.2 | 440.9 | 426.2 | 420.5 | 350.6 | 344.8 | 326.3 | |
IRR [%] | 429.7 | 73.03 | 59.01 | 47.83 | 46.17 | 65.03 | 65.52 | 62.57 | |
Payback period | 9.3 | 8.7 | 9.0 | 9.4 | 9.3 | 10.7 | 10.8 | 11.3 | |
Change +10% Installation costs = 110% | LCOE [EUR/kWh] | 0.119 | 0.107 | 0.115 | 0.118 | 0.118 | 0.125 | 0.135 | 0.140 |
ROI [%] | 377.9 | 398.7 | 389.3 | 375.4 | 370.8 | 318.4 | 300.8 | 283.9 | |
IRR [%] | 74.83 | 70.38 | 55.95 | 45.39 | 43.93 | 65.03 | 62.48 | 59.49 | |
Payback period | 10.1 | 9.6 | 9.8 | 10.2 | 10.1 | 11.4 | 11.8 | 12.3 | |
Change −5% Installation costs = 95% | LCOE [EUR/kWh] | 0.109 | 0.10 | 0.106 | 0.109 | 0.109 | 0.121 | 0.123 | 0.128 |
ROI [%] | 459.4 | 482.7 | 471.4 | 456.0 | 450.0 | 376.4 | 370.4 | 350.8 | |
IRR [%] | 79.38 | 74.05 | 60.02 | 48.62 | 46.91 | 66.53 | 67.06 | 64.13 | |
Payback period | 8.8 | 8.3 | 8.5 | 8.9 | 8.8 | 10.2 | 10.3 | 10.8 |
Variant | 10° S | 15° S | 20° S | 25° S | 30° S | 10° EW | 20° EW | 30° EW | |
---|---|---|---|---|---|---|---|---|---|
No Change Electricity sale price | LCOE [EUR/kWh] | 0.112 | 0.1 | 0.109 | 0.112 | 0.112 | 0.125 | 0.126 | 0.132 |
ROI [%] | 77.89 | 453.2 | 440.9 | 426.2 | 420.5 | 350.6 | 344.8 | 326.3 | |
IRR [%] | 429.7 | 73.03 | 59.01 | 47.83 | 46.17 | 65.03 | 65.52 | 62.57 | |
Payback period | 9.3 | 8.7 | 9.0 | 9.4 | 9.3 | 10.7 | 10.8 | 11.3 | |
Change +5% Electricity sale price | LCOE [EUR/kWh] | 0.112 | 0.101 | 0.109 | 0.112 | 0.112 | 0.125 | 0.127 | 0.131 |
ROI [%] | 461.8 | 485.5 | 473.5 | 458.1 | 452.1 | 378.6 | 372.7 | 353.2 | |
IRR [%] | 83.79 | 78.05 | 63.08 | 50.97 | 49.16 | 70.14 | 70.74 | 67.78 | |
Payback period | 8.8 | 8.2 | 8.5 | 8.9 | 8.8 | 10.1 | 10.2 | 10.7 | |
Change −10% Electricity sale price | LCOE [EUR/kWh] | 0.112 | 0.101 | 0.109 | 0.112 | 0.112 | 0.125 | 0.127 | 0.132 |
ROI [%] | 363.6 | 386.7 | 373.7 | 360.6 | 355.6 | 293.0 | 287.7 | 270.9 | |
IRR [%] | 65.93 | 62.83 | 50.74 | 41.45 | 40.10 | 54.73 | 55.00 | 52.30 | |
Payback period | 10.5 | 9.8 | 10.1 | 10.5 | 10.4 | 12.0 | 12.1 | 12.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thom, D.; Bugała, A.; Bugała, D.; Czekała, W. Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate. Energies 2025, 18, 4198. https://doi.org/10.3390/en18154198
Thom D, Bugała A, Bugała D, Czekała W. Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate. Energies. 2025; 18(15):4198. https://doi.org/10.3390/en18154198
Chicago/Turabian StyleThom, Dennis, Artur Bugała, Dorota Bugała, and Wojciech Czekała. 2025. "Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate" Energies 18, no. 15: 4198. https://doi.org/10.3390/en18154198
APA StyleThom, D., Bugała, A., Bugała, D., & Czekała, W. (2025). Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate. Energies, 18(15), 4198. https://doi.org/10.3390/en18154198