Two-Dimensional Materials: Synthesis, Characterization and Device Applications

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Inorganic Crystalline Materials".

Deadline for manuscript submissions: 15 January 2025 | Viewed by 5270

Special Issue Editors


E-Mail Website
Guest Editor
Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
Interests: two-dimensional material synthesis and related thin-film device development; thin-film electronic and electrochemical devices

E-Mail Website
Guest Editor
School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 610054, China
Interests: synthesis and application of graphene; h-BN; graphene/h-BN heterostructure and other two-dimensional materials

E-Mail Website
Guest Editor
Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
Interests: molecular beam epitaxy of III-V semiconductor compounds; growth on lattice mismatched substrates; strained layer superlattices; carrier recombination and transport in semiconductor heterostructures; optoelectronic devices and integrated circuits
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The fast development and surges of new two-dimensional materials provide exciting opportunities. Two-dimensional materials have shown extraordinary performance in energy storage, sensing, data processing, and flexible devices. This performance, and that of devices fabricated with 2D materials, depends on the synthesis process used, nanoscale characterization, and advanced fabrication techniques. This Special Issue on recent advances in 2D materials focuses on the synthesis, characterization, and device applications. It will be devoted to publishing original research articles or communications on two-dimensional materials with aspects of novel synthetic strategies and post-treatment, nanoscale imaging, in situ characterization, and device applications.

The 2D materials of interest include, but are not limited to:

  • Graphene and its derivatives (graphene oxide, reduced graphene oxide, graphene quantum dot);
  • Two-dimensional nitrides, oxides, and carbides;
  • Transition metal dichalcogenides;
  • Xenes;
  • Two-dimensional Au, Ag Nanosheets.

Dr. Yijing Y. Stehle
Dr. Fangzhu Qing
Dr. Dmitri Donetski
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • two-dimensional materials
  • synthesis
  • top-down
  • bottom-up
  • transistor
  • two-dimensional devices
  • nanofabrication
  • applications of 2D materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 5755 KiB  
Article
Synthesis and Investigation of ReSe2 Thin Films Obtained from Magnetron Sputtered Re and ReOx
by Kevon Kadiwala, Luize Dipane, Eriks Dipans, Arturs Bundulis, Martins Zubkins, Andrejs Ogurcovs, Jevgenijs Gabrusenoks, Dmitry Bocharov, Edgars Butanovs and Boris Polyakov
Crystals 2024, 14(8), 690; https://doi.org/10.3390/cryst14080690 - 28 Jul 2024
Viewed by 543
Abstract
The promise of two-dimensional (2D) rhenium diselenide (ReSe2) in electronics and optoelectronics has sparked considerable interest in this material. However, achieving the growth of high-quality ReSe2 thin films on a wafer scale remains a significant challenge. In this study, we [...] Read more.
The promise of two-dimensional (2D) rhenium diselenide (ReSe2) in electronics and optoelectronics has sparked considerable interest in this material. However, achieving the growth of high-quality ReSe2 thin films on a wafer scale remains a significant challenge. In this study, we adopted a two-step method to produce ReSe2 thin films by combining magnetron sputtering of Re and ReOx onto flat substrates with subsequent selenization via atmospheric pressure chemical vapor transport (CVT). After analyzing the produced films using X-ray diffraction to identify the crystalline phase in formed thin film and scanning electron microscopy (SEM) to examine surface morphology, it was determined that the suitable temperature range for the 15 min selenization process with CVT is 650 °C–750 °C. Further investigation of these optimally produced ReSe2 thin films included atomic force microscopy (AFM), X-ray photoelectron spectroscopy, and Raman spectroscopy. The bulk electrical analysis of these films and AFM and SEM surface morphology revealed a strong reliance on the type of precursor material used for their synthesis, whereas optical measurements indicated a potential for the films in non-linear optics applications, irrespective of the precursor or temperature used. This study not only provides a new pathway for the growth of ReSe2 films but also sheds light on the synthesis approaches of other 2D transition metal dichalcogenide materials. Full article
Show Figures

Figure 1

20 pages, 5951 KiB  
Article
Wafer-Scale ALD Synthesis of MoO3 Sulfurized to MoS2
by Sachin Shendokar, Moha Feroz Hossen and Shyam Aravamudhan
Crystals 2024, 14(8), 673; https://doi.org/10.3390/cryst14080673 - 24 Jul 2024
Viewed by 612
Abstract
Silicon has dimensional limitations in following Moore’s law; thus, new 2D materials complementing Silicon are being researched. Molybdenum disulfide (MoS2) is a prospective material anticipated to bridge the gap to complement Silicon and enhance the performances of semiconductor devices and embedded [...] Read more.
Silicon has dimensional limitations in following Moore’s law; thus, new 2D materials complementing Silicon are being researched. Molybdenum disulfide (MoS2) is a prospective material anticipated to bridge the gap to complement Silicon and enhance the performances of semiconductor devices and embedded systems in the package. For a synthesis process to be of any relevance to the industry. it needs to be at the wafer scale to match existing Silicon wafer-processing standards. Atomic Layer Deposition (ALD) is one of the most promising techniques for synthesizing wafer-scale monolayer MoS2 due to its self-limiting, conformal, and low-temperature characteristics. This paper discusses the wafer-scale ALD synthesis of Molybdenum trioxide (MoO3) using Mo (CO)6 as a precursor with Ozone as a reactant. An ALD-synthesized wafer-scale MoO3 thin film was later sulfurized through Chemical Vapor Deposition (CVD) to transform into stoichiometric MoS2, which was evaluated using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The roles of activation energy and first-order reaction kinetics in determining the ALD recipe parameters of the pulse time, reactor temperature, and purge time are explicitly discussed in detail. Discretized pulsing for developing one-cycle ALD for monolayer growth is suggested. Remedial measures to overcome shortcomings observed during this research are suggested. Full article
Show Figures

Figure 1

17 pages, 12553 KiB  
Article
Metatungstate Chemical Vapor Deposition of WSe2: Substrate Effects, Shapes, and Morphologies
by Krastyo Buchkov, Peter Rafailov, Nikolay Minev, Vladimira Videva, Velichka Strijkova, Todor Lukanov, Dimitre Dimitrov and Vera Marinova
Crystals 2024, 14(2), 184; https://doi.org/10.3390/cryst14020184 - 13 Feb 2024
Cited by 2 | Viewed by 2106
Abstract
Owing to their exceptional properties, which are usually determined by the growth conditions, 2D transition metal dichalcogenides (TMDCs) offer numerous research directions for applications in the fields of spintronics, valleytronics, and optoelectronics. Here, we focus on the chemical vapor deposition (CVD) synthesis of [...] Read more.
Owing to their exceptional properties, which are usually determined by the growth conditions, 2D transition metal dichalcogenides (TMDCs) offer numerous research directions for applications in the fields of spintronics, valleytronics, and optoelectronics. Here, we focus on the chemical vapor deposition (CVD) synthesis of WSe2 (tungsten diselenide) nanoclusters/nanoflakes by using a liquid precursor for tungsten (ammonium metatungstate) on Si/SiO2, fused silica, and sapphire substrates. Various WSe2 clusters with different sizes, thicknesses, and geometries were analyzed by means of optical and atomic force microscopy (AFM) and Raman spectroscopy. The observed structures were mostly WSe2 multilayers; however, monolayer formations were also found. They showed significant morphological differences, as well as wide nucleation density and size variations, possibly related to precursor/substrate surface interactions under the same CVD synthesis conditions. The largest WSe2 domains with a lateral size of up to hundreds of micrometers were observed on sapphire, probably caused by a higher growth rate of singular nucleation sites. WSe2 domains with irregular and triangular shapes were simultaneously identified on fused silica, whereas multilayered pyramidal WSe2 structures dominated in the case of Si/SiO2 substrates. The application of polarized Raman spectroscopy to precisely determine and differentiate the characteristic vibrational modes (A1g, E2g, and 2LA(M)) enabled the unambiguous identification of 2D and/or multilayered WSe2 formations with a high crystallinity level. The presented comparative analysis of samples prepared in relatively simple synthesis conditions (moderate working temperatures and ambient pressure) provides a base for further progress of the facile metatungstate CVD method and relevant opportunities for the exploration of 2D TMDC materials. Full article
Show Figures

Figure 1

Review

Jump to: Research

28 pages, 10351 KiB  
Review
Two-Dimensional Pentamode Metamaterials: Properties, Manufacturing, and Applications
by Chuang Zhou, Qi Li, Xiaomei Sun, Zifei Xiao and Haichao Yuan
Crystals 2024, 14(6), 521; https://doi.org/10.3390/cryst14060521 - 30 May 2024
Viewed by 765
Abstract
Metamaterials are artificial materials with properties depending mainly on their designed structures instead of their materials. Pentamode metamaterials are one type of metamaterial. They have solid structures with fluid-like properties, which can only withstand compressive stresses, not shear stresses. Two-dimensional pentamode metamaterials are [...] Read more.
Metamaterials are artificial materials with properties depending mainly on their designed structures instead of their materials. Pentamode metamaterials are one type of metamaterial. They have solid structures with fluid-like properties, which can only withstand compressive stresses, not shear stresses. Two-dimensional pentamode metamaterials are easier to manufacture than three-dimensional models, so they have received wide attention. In this review, the properties, manufacturing, and applications of two-dimensional pentamode metamaterials will be discussed. Their water-like properties are their most important properties, and their velocities and anisotropy can be designed. They can be processed by wire-cut electrical discharge machining, waterjet cutting, and additive manufacturing techniques. They have a broad application prospect in acoustic fields such as acoustic stealth cloaks, acoustic waveguides, flat acoustic focusing lenses, pentamode acoustic meta-surfaces, etc. Full article
Show Figures

Figure 1

Back to TopTop