Tamarixetin: A Promising Bioflavonoid Against Acetaminophen-Induced Liver Injury
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.1.1. Experimental Design
2.1.2. Histopathological Studies of the Liver
2.1.3. Assessment of Plasma ALT Concentration
2.1.4. The Biochemical Analysis of the Liver
2.1.5. Assessment of Hepatic Lipid Peroxidation
2.1.6. Assessment of Hepatic Glutathione (GSH) Concentrations
2.2. Statistical Analysis
3. Results
3.1. Liver Enzymes
3.2. Oxidative Stress Markers
3.3. Redox Regulation and Stress Proteins
3.4. Histopathological Damage
3.5. Histological Findings (Figure 2)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HSP-70 | Heat shock protein 70 |
MDA | Malondialdehyde |
Trx | Tamarixetin |
APAP | N-acetyl-para-aminophenol |
PBS | Phosphate-buffer saline |
ELISA | Enzyme-linked immunosorbent assay |
References
- Wang, X.; Wu, Q.; Liu, A.; Anadón, A.; Rodríguez, J.-L.; Martínez-Larrañaga, M.-R.; Yuan, Z.; Martínez, M.-A. Paracetamol: Overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug Metab. Rev. 2017, 49, 395–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, S.; Cheng, H.; Lv, H.; Cheng, G.; Ci, X. Nrf2-mediated liver protection by esculentoside A against acetaminophen toxicity through the AMPK/Akt/GSK3 pathway. Free. Radic. Biol. Med. 2016, 101, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Lu, Q.; Li, Z.; Li, J.; Zhao, Q.; Li, J. Acetaminophen-induced liver injury: Molecular mechanism and treatments from natural products. Front. Pharmacol. 2023, 14, 1122632. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke, H.; Adelusi, O.B.; Akakpo, J.Y.; Nguyen, N.T.; Sanchez-Guerrero, G.; Umbaugh, D.S.; Ding, W.-X.; Ramachandran, A. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm. Sin. B 2021, 11, 3740–3755. [Google Scholar] [CrossRef]
- Hionides-Gutierrez, A.; Goikoetxea-Usandizaga, N.; Sanz-García, C.; Martínez-Chantar, M.L.; Cubero, F.J. Novel Emerging Mechanisms in Acetaminophen (APAP) Hepatotoxicity. Liver Int. 2024, 45, e16167. [Google Scholar] [CrossRef]
- Subramanya, S.; Venkataraman, B.; Meeran, M.; Goyal, S.; Patil, C.; Ojha, S. Therapeutic Potential of Plants and Plant Derived Phytochemicals against Acetaminophen-Induced Liver Injury. Int. J. Mol. Sci. 2018, 19, 3776. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, J.; Hu, C.; Wang, T.; Lu, J.; Wu, C.; Chen, L.; Jin, M.; Ji, G.; Cao, Q.; et al. Apigenin Prevents Acetaminophen-Induced Liver Injury by Activating the SIRT1 Pathway. Front. Pharmacol. 2020, 11, 514. [Google Scholar] [CrossRef]
- Kapoor , V.K.; Kaur, A. Drug-glycosidation and drug development. Mini Rev. Med. Chem. 2013, 13, 584–596. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, S.J.; Cho, J.; Gharbi, A.; Han, H.D.; Kang, T.H.; Kim, Y.; Lee, Y.; Park, W.S.; Jung, I.D.; et al. Tamarixetin Exhibits Anti-inflammatory Activity and Prevents Bacterial Sepsis by Increasing IL-10 Production. J. Nat. Prod. 2018, 81, 1435–1443. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, F.; Fang, M.; Yao, X.; Xu, L.; Liu, Y.; Liu, Y.; Liang, D.; Zeng, K.; Li, N.; et al. Tamarixetin ameliorates cerebral ischemia—Reperfusion injury via suppressing nicotinamide adenine dinucleotide phosphate oxidase 2/nucleotide-binding oligomerization domain like receptor family pyrin domain-containing 3 inflammasome activation. Phytother. Res. 2024, 38, 4286–4306. [Google Scholar] [CrossRef]
- Lee, S.-H.; Shin, M.K.; Sung, J.-S. Tamarixetin Protects Chondrocytes against IL-1β-Induced Osteoarthritis Phenotype by Inhibiting NF-κB and Activating Nrf2 Signaling. Antioxidants 2024, 13, 1166. [Google Scholar] [CrossRef] [PubMed]
- Galanty, A.; Grudzińska, M.; Paździora, W.; Paśko, P. Erucic Acid-Both Sides of the Story: A Concise Review on Its Beneficial and Toxic Properties. Molecules 2023, 28, 1924. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Y.; Huang, W.; Zhou, X.; Wang, M.; Zhong, B.; Peng, D. Effect of sinomenine on cytokine expression of macrophages and synoviocytes in adjuvant arthritis rats. J. Ethnopharmacol. 2005, 98, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Demougeot, C.; Marie, C.; Beley, A. Importance of iron location in iron-induced hydroxyl radical production by brain slices. Life Sci. 2000, 67, 399–410. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Isbister, G.K.; Chiew, A. The changing face of paracetamol toxicity and new regimens for an old antidote acetylcysteine. Br. J. Clin. Pharmacol. 2020, 87, 715–716. [Google Scholar] [CrossRef]
- Prescott, L.; Ballantyne, A.; Proudfoot, A.; Park, J.; Adriaenssens, P. Treatment of paracetamol (acetaminophen) poisoning with N-acetylcysteine. Lancet 1977, 310, 432–434. [Google Scholar] [CrossRef]
- Ijaz, M.U.; Khalil, M.; Hamza, A.; Khatoon, A. Attenuative effects of tamarixetin against polystyrene microplastics-induced hepatotoxicity in rats by regulation of Nrf-2/Keap-1 pathway. Cell Biochem. Funct. 2023, 41, 1451–1461. [Google Scholar] [CrossRef]
- El-Aarag, B.; Khairy, A.; Khalifa, S.A.M.; El-Seedi, H.R. Protective Effects of Flavone from Tamarix aphylla against CCl4-Induced Liver Injury in Mice Mediated by Suppression of Oxidative Stress, Apoptosis and Angiogenesis. Int. J. Mol. Sci. 2019, 20, 5215. [Google Scholar] [CrossRef]
- Sekkien, A.; Swilam, N.; Ebada, S.S.; Esmat, A.; El-Khatib, A.H.; Linscheid, M.W.; Singab, A.N. Polyphenols from Tamarix nilotica: LC–ESI-MSn Profiling and In Vivo Antifibrotic Activity. Mol. A J. Synth. Chem. Nat. Prod. Chem. 2018, 23, 1411. [Google Scholar] [CrossRef]
- Vairetti, M.; Di Pasqua, L.G.; Cagna, M.; Richelmi, P.; Ferrigno, A.; Berardo, C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants 2021, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kang, C.; Yoo, Y.-S.; Hah, D.-Y.; Kim, C.H.; Kim, E.; Kim, J.S. Cytotoxicity and the induction of the stress protein Hsp 70 in Chang liver cells in response to zearalenone-induced oxidative stress. Environ. Toxicol. Pharmacol. 2013, 36, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Omar, R.; Pappolla, M.; Saran, B. Immunocytochemical detection of the 70-kd heat-shock protein in alcoholic liver-disease. Arch. Pathol. Lab. Med. 1990, 114, 589–592. [Google Scholar] [PubMed]
- Tacchini, L.; Schiaffonati, L.; Pappalardo, C.; Gatti, S.; Bernelli-Zazzera, A. Expression of HSP70, immediate-early response, and heme oxygenase genes in ischemic-reperfused rat liver. Lab. Investig. A J. Tech. Methods Pathol. 1993, 68, 465–471. [Google Scholar]
- Pahlavani, M.A.; Harris, M.D.; Moore, S.A.; Richardson, A. Expression of heat shock protein 70 in rat spleen lymphocytes is affected by age but not by food restriction. J. Nutr. 1996, 126, 2069–2075. [Google Scholar] [CrossRef]
- Sumida, Y.; Nakashima, T.; Yoh, T.; Furutani, M.; Hirohama, A.; Kakisaka, Y.; Nakajima, Y.; Ishikawa, H.; Mitsuyoshi, H.; Okanoue, T.; et al. Serum thioredoxin levels as a predictor of steatohepatitis in patients with nonalcoholic fatty liver disease. J. Hepatol. 2003, 38, 32–38. [Google Scholar] [CrossRef]
- Sumida, Y.; Nakashima, T.; Yoh, T.; Nakajima, Y.; Ishikawa, H.; Mitsuyoshi, H.; Sakamoto, Y.; Okanoue, T.; Kashima, K.; Nakamura, H.; et al. Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. J. Hepatol. 2000, 33, 616–622. [Google Scholar] [CrossRef]
- Kato, A.; Odamaki, M.; Nakamura, H.; Yodoi, J.; Hishida, A. Elevation of blood thioredoxin in hemodialysis patients with hepatitis C virus infection. Kidney Int. 2003, 63, 2262–2268. [Google Scholar] [CrossRef]
- Li, J.; Cheng, P.; Li, S.; Zhao, P.; Han, B.; Ren, X.; Zhong, J.L.; Lloyd, M.D.; Pourzand, C.; Holmgren, A.; et al. Selenium Status in Diet Affects Acetaminophen-Induced HepatotoxicityviaInterruption of Redox Environment. Antioxid. Redox Signal. 2021, 34, 1355–1367. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Gao, Y.; Zhang, W.; Cui, X.; Liu, J.; Wei, Y. Arsenic Induces Thioredoxin 1 and Apoptosis in Human Liver HHL-5 Cells. Biol. Trace Elem. Res. 2017, 181, 234–241. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wei, Y. The role and mechanisms of thioredoxins in arsenic-induced liver injury. Chin. J. Endem. 2017, 36, 693–697. [Google Scholar] [CrossRef]
- Xu, P.; Su, Y.-N.; Ling, C.; Wang, J.; Zhang, W. Mitochondrial dysfunction mediated by thioredoxin-interacting protein: A crucial determinant in di(2-ethylhexyl) phthalate-induced liver failure. Ecotoxicol. Environ. Saf. 2024, 272, 116103. [Google Scholar] [CrossRef] [PubMed]
- Kayalı, A.; Bora, E.S.; Acar, H.; Erbaş, O. Evaluation of the Reparative Effect of Sinomenine in an Acetaminophen-Induced Liver Injury Model. Curr. Issues Mol. Biol. 2024, 46, 923–933. [Google Scholar] [CrossRef]
- Lomozová, Z.; Catapano, M.C.; Hrubša, M.; Karlíčková, J.; Macáková, K.; Kučera, R.; Mladěnka, P. Chelation of Iron and Copper by Quercetin B-Ring Methyl Metabolites, Isorhamnetin and Tamarixetin, and Their Effect on Metal-Based Fenton Chemistry. J. Agric. Food Chem. 2021, 69, 5926–5937. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, K.J.A.; Vrolijk, M.F.; Bouwman, F.G.; Van der Vijgh, W.J.F.; Bast, A.; Haenen, G.R.M.M. The Minor Structural Difference between the Antioxidants Quercetin and 4'O-Methylquercetin Has a Major Impact on Their Selective Thiol Toxicity. Int. J. Mol. Sci. 2014, 15, 7475–7484. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, K.; Ling, H.; Mao, J.; Xu, B.; Liu, Z.; Wang, J. Quercetin attenuates cadmium-induced hepatotoxicity by suppressing oxidative stress and apoptosis in rat. J. Trace Elem. Med. Biol. 2024, 86, 127554. [Google Scholar] [CrossRef]
- Abo-El-Sooud, K.; Abd-Elhakim, Y.M.; Hashem, M.M.M.; El-Metwally, A.E.; Hassan, B.A.; El-Nour, H.H.M. Ameliorative effects of quercetin against hepatic toxicity of oral sub-chronic co-exposure to aluminum oxide nanoparticles and lead-acetate in male rats. Naunyn-Schmiedeberg's Arch. Pharmacol. 2022, 396, 737–747. [Google Scholar] [CrossRef]
- Ghazanfari, A.; Soodi, M.; Omidi, A. Quercetin ameliorates acetamiprid-inducedhepatotoxicity and oxidative stress. Physiol. Pharmacol. 2021, 25, 154–161. [Google Scholar] [CrossRef]
- Marcolin, E.; San-Miguel, B.; Vallejo, D.; Tieppo, J.; Marroni, N.; González-Gallego, J.; Tuñón, M.J. Quercetin Treatment Ameliorates Inflammation and Fibrosis in Mice with Nonalcoholic Steatohepatitis. J. Nutr. 2012, 142, 1821–1828. [Google Scholar] [CrossRef]
- Li, C.; Tao, M.; Li, T.; Huang, X.; Sui, H.; Fu, X. Research Progress of Tamarixetin and its Glycosides. Mini-Rev. Med. Chem. 2024, 24, 689–703. [Google Scholar] [CrossRef]
Normal Group | APAP and Saline | APAP and 3 mg/kg/day Tamarixetin | |
---|---|---|---|
ALT (U/L) | 41.4 ± 2.6 | 201.2 ± 6.7 ** | 105.1 ± 9.8 ## |
Liver MDA Level (nmol/mg protein) | 1.16 ± 0.1 | 5.5 ± 0.2 * | 3.4 ± 0.1 # |
Liver GSH Level (nmol/mg protein) | 6.09 ± 0.3 | 1.8 ± 0.1 ** | 5.3 ± 0.2 ## |
Liver HSP-70 Level (pg/mg protein) | 7.5 ± 0.1 | 9.2 ± 0.2 * | 14.8 ± 0.9 # |
Liver ThioredoxinLevel (pg/mg protein) | 15.8 ± 1.3 | 8.3 ± 0.5 ** | 12.9 ± 0.8 ## |
Damaged Hepatocytes (percentage) | 4.2 ± 0.1 | 58.5 ± 2.6 ** | 9.5 ± 0.8 ## |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telafarlı, M.A.; Bora, E.S.; Topal, F.; Erbaş, O. Tamarixetin: A Promising Bioflavonoid Against Acetaminophen-Induced Liver Injury. Curr. Issues Mol. Biol. 2025, 47, 524. https://doi.org/10.3390/cimb47070524
Telafarlı MA, Bora ES, Topal F, Erbaş O. Tamarixetin: A Promising Bioflavonoid Against Acetaminophen-Induced Liver Injury. Current Issues in Molecular Biology. 2025; 47(7):524. https://doi.org/10.3390/cimb47070524
Chicago/Turabian StyleTelafarlı, Mehmet Ali, Ejder Saylav Bora, Firdes Topal, and Oytun Erbaş. 2025. "Tamarixetin: A Promising Bioflavonoid Against Acetaminophen-Induced Liver Injury" Current Issues in Molecular Biology 47, no. 7: 524. https://doi.org/10.3390/cimb47070524
APA StyleTelafarlı, M. A., Bora, E. S., Topal, F., & Erbaş, O. (2025). Tamarixetin: A Promising Bioflavonoid Against Acetaminophen-Induced Liver Injury. Current Issues in Molecular Biology, 47(7), 524. https://doi.org/10.3390/cimb47070524