cimb-logo

Journal Browser

Journal Browser

Human and Animal Infectious Diseases: Prevention, Diagnosis and Treatment, 2nd Edition

A special issue of Current Issues in Molecular Biology (ISSN 1467-3045). This special issue belongs to the section "Molecular Medicine".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 4418

Special Issue Editor


E-Mail Website
Guest Editor
Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
Interests: gene; infectious diseases; herpesviruses; pharmacology and toxicology; molecular medicine; oncology and hematology; cardiovascular diseases; natural products; drug discovery; analytical and bioanalytical techniques
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

For decades, effective treatments of infectious diseases such as viral, bacterial, and fungal infections have remained a significant challenge in medicine. As we know, healthcare providers and researchers are currently facing many hurdles to finding effective therapies for these diseases, including drug resistance, which is considered a major challenge. In recent years, molecular medicine evolution has accelerated the progress of finding successful approaches to manage infectious diseases. Following the first edition of this Special Issue, this second edition also aims to shed light on recent innovations that explain infectious disease pathogenesis at the molecular or physiological level, which may lead to the design of specific tools for disease diagnosis, treatment (including drug design and development), or prevention (including vaccine development). Studies that are performed at cellular and genetic levels, which describe the implications of the results for infectious diseases, are also considered for publication. Computational investigations that are performed to unveil the molecular pathways and are supported by in vitro and in vivo experiments are also welcomed.

Dr. Sherif T. S. Hassan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Current Issues in Molecular Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bacterial infections
  • fungal infections
  • viral infections
  • infectious microorganisms
  • molecular medicine techniques
  • diagnosis, treatment, and prevention approaches
  • molecular and physiological investigations
  • cellular and genetic studies
  • disease pathogenesis
  • computational methods
  • drug design and development

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 1735 KiB  
Article
B Cell Dynamics and Transitional B Cells in Long COVID
by Zoia R. Korobova, Natalia A. Arsentieva, Natalia E. Liubimova, Oleg K. Batsunov, Anastasia A. Butenko, Albina E. Kokoeva, Natalia G. Kucherenko, Victor A. Kashchenko, Ekaterina V. Boeva, Anna O. Norka, Anastasia A. Knizhnikova, Vadim V. Rassokhin, Nikolay A. Belyakov and Areg A. Totolian
Curr. Issues Mol. Biol. 2025, 47(4), 245; https://doi.org/10.3390/cimb47040245 - 1 Apr 2025
Viewed by 1369
Abstract
Background: Long COVID is characterized by persistent symptoms following acute SARS-CoV-2 infection. This study aims to evaluate immune system markers, including antigen-specific antibodies, B cell subsets, and Th2-related cytokines, in individuals with long COVID and to investigate their potential impact on the development [...] Read more.
Background: Long COVID is characterized by persistent symptoms following acute SARS-CoV-2 infection. This study aims to evaluate immune system markers, including antigen-specific antibodies, B cell subsets, and Th2-related cytokines, in individuals with long COVID and to investigate their potential impact on the development of this condition. Methods: We analyzed blood plasma from 63 individuals diagnosed with long COVID based on clinical presentation and 47 healthy individuals with COVID-19 history but no clinical symptoms. Antigen-specific IgG antibodies were measured using commercial ELISA kits. Lymphocyte subpopulations were assessed via flow cytometry and a gating strategy based on CD27 and CD38. Th2 cytokines (IL-4, IL-5, IL-13) were quantified using the xMAP multiplex assay. Results: We noted no significant differences in IgG levels between groups. Notably, individuals with long COVID demonstrated a higher percentage of naive mature B cells (CD27−CD38+), while transitional (CD27−CD38+++) and double-negative (DN, CD27−CD38-) cells were significantly reduced. Elevated levels of IL-5 and IL-13 were observed in long COVID patients. Classification analysis revealed that the percentage of transitional B cells (CD27−CD38+++) was a strong predictor of long COVID. Conclusions: Our findings highlight alterations in B cell dynamics among individuals with long COVID, which may contribute to autoimmune processes. Full article
Show Figures

Figure 1

16 pages, 2897 KiB  
Article
Ultrasensitive CRISPR/Cas12a-Based System for Detection of BlaOXA-1 Gene in Antibiotic-Resistant Microorganisms
by Marina Tyumentseva, Aleksandr Tyumentsev, Anna Prelovskaya, Andrey Akinin, Yulia Mikhailova, Andrey Shelenkov, Anna Panevina and Vasiliy Akimkin
Curr. Issues Mol. Biol. 2025, 47(4), 238; https://doi.org/10.3390/cimb47040238 - 29 Mar 2025
Viewed by 290
Abstract
The blaOXA-1 gene encodes an oxacillin-hydrolyzing beta-lactamase of extended-spectrum beta-lactamase (ESBL)-producing microorganisms. The blaOXA-1 gene is found in the resistomes of some Enterobacteriaceae, Morganellaceae, Pasteurellaceae, Moraxellaceae, Aeromonadaceae, Pseudomonadaceae, Yersiniaceae, and Vibrionaceae. Most ESBL [...] Read more.
The blaOXA-1 gene encodes an oxacillin-hydrolyzing beta-lactamase of extended-spectrum beta-lactamase (ESBL)-producing microorganisms. The blaOXA-1 gene is found in the resistomes of some Enterobacteriaceae, Morganellaceae, Pasteurellaceae, Moraxellaceae, Aeromonadaceae, Pseudomonadaceae, Yersiniaceae, and Vibrionaceae. Most ESBL detection methods, including those to detect OXA-1-producing microorganisms, are time-consuming, and require specialized equipment and qualified personnel. Here, we report a new CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)/Cas12a-based detection assay coupled with polymerase chain reaction (PCR) to sensitively detect OXA-1-bearing microorganisms. The PCR-coupled CRISPR/Cas12a-based fluorescence assay includes (i) a pre-amplification step and (ii) a nucleic acid detection step. The pre-amplification step is based on a commonly used PCR, and the detection step is based on the CRISPR/Cas12a property to nonspecifically hydrolyze single-stranded DNA fluorescent reporter molecules. The pre-amplification step takes 65 min, and the detection step is shortened and takes only 5 min. The developed assay can easily detect single (1.25) copies of the blaOXA-1 gene in a reaction and is efficient not only in the detection of a blaOXA-1 model matrix but also in the detection of blaOXA-1-positive microorganisms. We hope that our assay has the potential to improve the monitoring of OXA-1-producing microorganisms and therefore contribute to mitigating the deadly global threat of antibiotic-resistant microorganisms. Full article
Show Figures

Figure 1

17 pages, 5436 KiB  
Article
In Silico and In Vitro Studies to Explore the Effect of Thymoquinone on Isocitrate Lyase, Biofilm Formation, and the Expression of Some Virulence Genes in Candida albicans
by Masood Alam Khan, Mohd Azam and Hina Younus
Curr. Issues Mol. Biol. 2024, 46(11), 12951-12967; https://doi.org/10.3390/cimb46110771 - 14 Nov 2024
Cited by 1 | Viewed by 1220
Abstract
Thymoquinone (TQ), a bioactive compound from black cumin (Nigella sativa), has demonstrated a broad range of therapeutic effects. The aim of this study is to evaluate the antifungal efficacy of TQ by targeting key virulence factors in Candida albicans, specifically [...] Read more.
Thymoquinone (TQ), a bioactive compound from black cumin (Nigella sativa), has demonstrated a broad range of therapeutic effects. The aim of this study is to evaluate the antifungal efficacy of TQ by targeting key virulence factors in Candida albicans, specifically focusing on isocitrate lyase (ICL) activity, biofilm formation, and gene expression. This study explored TQ’s impact on ICL, a decisive enzyme in the glyoxylate cycle, along with its effect on hyphal formation, biofilm development, and the virulent gene expression of C. albicans through in silico and in vitro studies. Molecular docking revealed a binding energy of −6.4 kcal/mol between TQ and ICL, indicating moderate affinity. The stability of the ICL-TQ complex was validated through 50 ns molecular dynamics simulations, showing the root mean square deviation (RMSD) values of 0.35 nm for ICL and 0.38 nm for the complex. In vitro studies further validated these findings, showing a dose-dependent inhibition of ICL activity. TQ at 2 µg/mL reduced enzyme activity by 57%, and at 4 µg/mL, by 91.4%. Additionally, TQ disrupted the yeast-to-hyphae switch, a key virulence factor, with 1 and 2 µg/mL doses significantly inhibiting hyphal formation. The biofilm formation was similarly affected, with a 58% reduction at 2 µg/mL and an 83% reduction at 4 µg/mL. TQ also downregulated the ALS1 and HWP1 genes that are associated with adhesion and biofilm development, demonstrating its broad-spectrum antifungal activity. These findings suggest that TQ is a promising candidate for antifungal therapies, targeting multiple virulence factors in C. albicans and potentially overcoming biofilm-associated drug resistance. Future research should focus on in vivo validation, optimization for clinical applications, and expanding its spectrum against other drug-resistant fungal species. Full article
Show Figures

Graphical abstract

20 pages, 3035 KiB  
Article
Virtual Screening and Meta-Analysis Approach Identifies Factors for Inversion Stimulation (Fis) and Other Genes Responsible for Biofilm Production in Pseudomonas aeruginosa: A Corneal Pathogen
by Promise M. Emeka, Lorina I. Badger-Emeka and Krishnaraj Thirugnanasambantham
Curr. Issues Mol. Biol. 2024, 46(11), 12931-12950; https://doi.org/10.3390/cimb46110770 - 13 Nov 2024
Viewed by 1051
Abstract
Bacterial keratitis caused by Pseudomonas aeruginosa is indeed a serious concern due to its potential to cause blindness and its resistance to antibiotics, partly attributed to biofilm formation and cytotoxicity to the cornea. The present study uses a meta-analysis of a transcriptomics dataset [...] Read more.
Bacterial keratitis caused by Pseudomonas aeruginosa is indeed a serious concern due to its potential to cause blindness and its resistance to antibiotics, partly attributed to biofilm formation and cytotoxicity to the cornea. The present study uses a meta-analysis of a transcriptomics dataset to identify important genes and pathways in biofilm formation of P. aeruginosa induced keratitis. By combining data from several studies, meta-analysis can enhance statistical power and robustness, enabling the identification of 83 differentially expressed candidate genes, including fis that could serve as therapeutic targets. The approach of combining meta-analysis with virtual screening and in vitro methods provides a comprehensive strategy for identifying potential target genes and pathways crucial for bacterial biofilm formation and development anti-biofilm medications against P. aeruginosa infections. The study identified 83 candidate genes that exhibited differential expression in the biofilm state, with fis proposed as an ideal target for therapy for P. aeruginosa biofilm formation. These techniques, meta-analysis, virtual screening, and invitro methods were used in combination to diagnostically identify these genes, which play a significant role in biofilms. This finding has highlighted a hallmark target list for P. aeruginosa anti-biofilm potential treatments. Full article
Show Figures

Figure 1

Back to TopTop