The Role of Vitamin D and Vitamin D Receptor in Sepsis
Abstract
1. Introduction
2. Clinical Evidence of VD Impact on Sepsis
2.1. VD Deficiency
2.2. VD Supplementation
2.3. Association of VDR Gene Polymorphism with the Risk of Sepsis
3. Possible Mechanisms of the Association Between VD/VDR and Sepsis
3.1. Pathophysiological Process of Sepsis
3.1.1. Innate Immunity and Inflammatory Mediators
3.1.2. Immunosuppression
3.1.3. Coagulation Disorder
3.1.4. Organ Dysfunction
3.2. VD/VDR
3.3. Immune Regulation
3.3.1. Monocytes/Macrophages
3.3.2. DCs
3.3.3. B Cells
3.3.4. T Cells
3.4. Antimicrobial Effect and Anti-Inflammation
3.4.1. VD/VDR Induced Cathelicidin Pathway in Antimicrobial Effect
3.4.2. VD/VDR Regulating Autophagy Pathway
3.4.3. Modulation of VD/VDR on Inflammatory Cytokines
3.4.4. Modulation of VD/VDR on microRNA
3.5. Oxidative Stress Regulation
3.6. Regulation of Gut Microbiota
3.7. Regulation of Endothelial Cells and Antithrombotic Activity
4. Critical Knowledge Gaps and Future Perspectives
4.1. Limitations and Gaps in Current Research
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
VD | vitamin D |
VDR | vitamin D receptor |
MODS | multiple organ dysfunction syndrome |
ICUs | intensive care units |
1,25(OH)2D3 | 1α,25-dihydroxyvitamin D3 |
VDD | vitamin D deficiency |
PICUs | pediatric intensive care units |
CRP | c-reactive protein |
APACHE II | acute physiology and chronic health evaluation II |
SOFA | sequential organ failure assessment |
EONS | early-onset neonatal sepsis |
RCT | randomized controlled trial |
SNPs | single nucleotide polymorphisms |
LPS | lipopolysaccharides (endotoxins) |
PAMPs | pathogen-associated molecular patterns |
DAMPs | damage-associated molecular patterns |
PRRs | pattern recognition receptors |
TLRs | toll-like receptors |
NOD | nucleotide-binding oligomerization domain |
RIG-I | retinoic acid-inducible gene 1 |
TNF-α | tumor necrosis factor-α |
IL-1 | interleukin-1 |
MDSCs | myeloid-derived suppressor cells |
MHC-II | major histocompatibility complex class II |
PD-1 | programmed cell death protein 1 |
DIC | disseminated intravascular coagulation |
TF | tissue factor |
FX | coagulation factors |
GSDMD | gasdermin D |
ROS | reactive oxygen species |
ATP | adenosine triphosphate |
DBP | vitamin D binding protein |
LC-MS/MS | liquid chromatography-tandem mass spectrometry |
RXR | retinoid X receptor |
VDREs | vitamin D response elements |
eRNAs | enhancer RNAs |
PDIA3 | protein disulfide isomerase family A member 3 |
DC(s) | dendritic cell(s) |
IFN-g | interferon-gamma |
APC | antigen-presenting cell |
NO | nitric oxide |
Th1: | T helper 1 cell |
CYP27B1 | 25-hydroxyvitamin D3 1-alpha-hydroxylase (enzyme) |
TCR | T cell receptor |
PLC-γ1 | phospholipase C gamma 1 |
iNKT | invariant natural killer T cell |
IFN-γ | interferon gamma |
Treg | regulatory T cell |
Foxp3 | forkhead box P3 |
AMP | antimicrobial peptide |
hCAP-18 | human cationic antimicrobial peptide 18 |
DEFB | defensin beta |
LL-37 | cathelicidin antimicrobial peptide (Active form of hCAP-18) |
Mtb | mycobacterium tuberculosis |
ZIKV | zika virus |
ATG16L1 | autophagy related 16 like 1 |
LC3 | microtubule associated protein 1 light chain 3 (Autophagy marker) |
MyD88 | myeloid differentiation primary response 88 |
TRIF | TIR-domain-containing adapter-inducing interferon-β |
IKKβ | inhibitor of nuclear factor kappa B kinase subunit beta |
GSH | glutathione |
MDA | malondialdehyde |
GPX4 | glutathione peroxidase 4 |
Nrf2 | nuclear factor erythroid 2–related factor 2 |
HO-1 | heme oxygenase 1 |
IBD | inflammatory bowel disease |
CAMP | cathelicidin antimicrobial peptide |
DEFB4 | defensin beta 4 |
IMECs | immunomodulatory endothelial cells |
eNOS | endothelial nitric oxide synthase |
TIPE1 | TNF-α-induced protein 8-like 1 |
EPCs | endothelial progenitor cells |
PF4 | platelet factor 4 |
DAPT | dual antiplatelet therapy |
ADP | adenosine diphosphate |
APS | antiphospholipid syndrome |
HRPR | high residual platelet reactivity |
WoSCC | Web of Science Core Collection |
TF | tissue factor |
TFPI | tissue factor pathway inhibitor |
MDMs | monocyte-derived macrophages |
ER | endoplasmic reticulum |
ALI | acute lung injury |
ATF6 | activating transcription factor 6 |
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801. [Google Scholar] [CrossRef]
- Angus, D.C.; van der Poll, T. Severe Sepsis and Septic Shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.J.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K.; International Forum of Acute Care Trialists Assessment of Global Incidence and Mortality of Hospital-Treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Cribbs, S.K.; Martin, G.S. Going Global with Sepsis: The Need for National Registries. Crit. Care Med. 2009, 37, 338–340. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann-Struzek, C.; Mellhammar, L.; Rose, N.; Cassini, A.; Rudd, K.E.; Schlattmann, P.; Allegranzi, B.; Reinhart, K. Incidence and Mortality of Hospital- and ICU-Treated Sepsis: Results from an Updated and Expanded Systematic Review and Meta-Analysis. Intensive Care Med. 2020, 46, 1552–1562. [Google Scholar] [CrossRef]
- Renkema, K.Y.; Alexander, R.T.; Bindels, R.J.; Hoenderop, J.G. Calcium and Phosphate Homeostasis: Concerted Interplay of New Regulators. Ann. Med. 2008, 40, 82–91. [Google Scholar] [CrossRef]
- Veldurthy, V.; Wei, R.; Oz, L.; Dhawan, P.; Jeon, Y.H.; Christakos, S. Vitamin D, Calcium Homeostasis and Aging. Bone Res. 2016, 4, 16041. [Google Scholar] [CrossRef]
- Müller, V.; de Boer, R.J.; Bonhoeffer, S.; Szathmáry, E. An Evolutionary Perspective on the Systems of Adaptive Immunity. Biol. Rev. Camb. Philos. Soc. 2018, 93, 505–528. [Google Scholar] [CrossRef]
- Vanherwegen, A.-S.; Gysemans, C.; Mathieu, C. Vitamin D Endocrinology on the Cross-Road between Immunity and Metabolism. Mol. Cell. Endocrinol. 2017, 453, 52–67. [Google Scholar] [CrossRef]
- Cortes, M.; Chen, M.J.; Stachura, D.L.; Liu, S.Y.; Kwan, W.; Wright, F.; Vo, L.T.; Theodore, L.N.; Esain, V.; Frost, I.M.; et al. Developmental Vitamin D Availability Impacts Hematopoietic Stem Cell Production. Cell Rep. 2016, 17, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Al-Tarrah, K.; Hewison, M.; Moiemen, N.; Lord, J.M. Vitamin D Status and Its Influence on Outcomes Following Major Burn Injury and Critical Illness. Burns Trauma 2018, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, A. A Potential Role of Vitamin D on Platelet Leukocyte Aggregation and Pathological Events in Sepsis: An Updated Review. J. Inflamm. Res. 2021, 14, 3651–3664. [Google Scholar] [CrossRef]
- Alhassan Mohammed, H.; Mirshafiey, A.; Vahedi, H.; Hemmasi, G.; Moussavi Nasl Khameneh, A.; Parastouei, K.; Saboor-Yaraghi, A.A. Immunoregulation of Inflammatory and Inhibitory Cytokines by Vitamin D 3 in Patients with Inflammatory Bowel Diseases. Scand. J. Immunol. 2017, 85, 386–394. [Google Scholar] [CrossRef]
- Baeke, F.; Takiishi, T.; Korf, H.; Gysemans, C.; Mathieu, C. Vitamin D: Modulator of the Immune System. Curr. Opin. Pharmacol. 2010, 10, 482–496. [Google Scholar] [CrossRef]
- Belsky, J.B.; Wira, C.R.; Jacob, V.; Sather, J.E.; Lee, P.J. A Review of Micronutrients in Sepsis: The Role of Thiamine, l-Carnitine, Vitamin C, Selenium and Vitamin D. Nutr. Res. Rev. 2018, 31, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D Regulation of Immune Function. Curr. Osteoporos. Rep. 2022, 20, 186–193. [Google Scholar] [CrossRef]
- Briassoulis, G.; Ilia, S. Vitamin D Deficiency in Sepsis: “Body Humors” Imbalance or Sepsis “Epiphenomenon”? Crit. Care Med. 2017, 45, 376–377. [Google Scholar] [CrossRef]
- Cutuli, S.L.; Ferrando, E.S.; Cammarota, F.; Franchini, E.; Caroli, A.; Lombardi, G.; Tanzarella, E.S.; Grieco, D.L.; Antonelli, M.; De Pascale, G. Update on Vitamin D Role in Severe Infections and Sepsis. J. Anesth. Analg. Crit. Care 2024, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Gois, P.; Ferreira, D.; Olenski, S.; Seguro, A. Vitamin D and Infectious Diseases: Simple Bystander or Contributing Factor? Nutrients 2017, 9, 651. [Google Scholar] [CrossRef]
- Kempker, J.; Martin, G. Vitamin D and Sepsis: From Associations to Causal Connections. Inflamm. Allergy-Drug Targets 2013, 12, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Rippel, C.; South, M.; Butt, W.W.; Shekerdemian, L.S. Vitamin D Status in Critically Ill Children. Intensive Care Med. 2012, 38, 2055–2062. [Google Scholar] [CrossRef]
- Looker, A.C.; Johnson, C.L.; Lacher, D.A.; Pfeiffer, C.M.; Schleicher, R.L.; Sempos, C.T. Vitamin D Status: United States, 2001–2006; NCHS Data Brief No. 59; National Center for Health Statistics: Hyattsville, MD, USA, 2011; pp. 1–8.
- Braun, A.B.; Gibbons, F.K.; Litonjua, A.A.; Giovannucci, E.; Christopher, K.B. Low Serum 25-Hydroxyvitamin D at Critical Care Initiation Is Associated with Increased Mortality. Crit. Care Med. 2012, 40, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.; Chang, D.; Mahadevappa, K.; Gibbons, F.K.; Liu, Y.; Giovannucci, E.; Christopher, K.B. Association of Low Serum 25-Hydroxyvitamin D Levels and Mortality in the Critically Ill. Crit. Care Med. 2011, 39, 671–677. [Google Scholar] [CrossRef]
- Lee, P.; Eisman, J.A.; Center, J.R. Vitamin D Deficiency in Critically Ill Patients. N. Engl. J. Med. 2009, 360, 1912–1914. [Google Scholar] [CrossRef] [PubMed]
- Venkatram, S.; Chilimuri, S.; Adrish, M.; Salako, A.; Patel, M.; Diaz-Fuentes, G. Vitamin D Deficiency Is Associated with Mortality in the Medical Intensive Care Unit. Crit. Care 2011, 15, R292. [Google Scholar] [CrossRef]
- Yu, W.; Ying, Q.; Zhu, W.; Huang, L.; Hou, Q. Vitamin D Status Was Associated with Sepsis in Critically Ill Children: A PRISMA Compliant Systematic Review and Meta-Analysis. Medicine 2021, 100, e23827. [Google Scholar] [CrossRef]
- Li, Q.; Li, W.; Chen, M.; Chai, Y.; Guan, L.; Chen, Y. Association of Vitamin D Receptor Gene Polymorphism with the Risk of Sepsis: A Systematic Review and Meta-Analysis. Medicine 2023, 102, e35130. [Google Scholar] [CrossRef]
- Seok, H.; Kim, J.; Choi, W.S.; Park, D.W. Effects of Vitamin D Deficiency on Sepsis. Nutrients 2023, 15, 4309. [Google Scholar] [CrossRef]
- Ghosh, A.; Prabhu M, M.; Prabhu, K.; Changani, M.; Patel, N.; Belle, V.S. Vitamin D as a Biomarker in Predicting Sepsis Outcome at a Tertiary Care Hospital. Asian J. Med. Sci. 2023, 14, 89–94. [Google Scholar] [CrossRef]
- Kahar, L.A.; Yusrawati, Y.; Jamsari, J.; Maskoen, T.; Aribowo, K.; Sari, W.M. Vitamin D-Binding Protein and the Role of Its Gene Polymorphisms in the Mortality of Sepsis Patients. Acta Medica Acad. 2024, 52, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, M.; Fındıklı, H.A. Novel Biomarker for Predicting Sepsis Mortality: Vitamin D Receptor. J. Int. Med. Res. 2021, 49, 030006052110347. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ding, S. Serum 25-Hydroxyvitamin D and the Risk of Mortality in Adult Patients with Sepsis: A Meta-Analysis. BMC Infect. Dis. 2020, 20, 189. [Google Scholar] [CrossRef]
- Olejarova, M.; Dobisova, A.; Suchankova, M.; Tibenska, E.; Szaboova, K.; Koutun, J.; Vlnieskova, K.; Bucova, M. Vitamin D Deficiency—A Potential Risk Factor for Sepsis Development, Correlation with Inflammatory Markers, SOFA Score and Higher Early Mortality Risk in Sepsis. Bratisl. Med. J. 2019, 120, 284–290. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, G.; Vallecoccia, M.S.; Schiattarella, A.; Di Gravio, V.; Cutuli, S.L.; Bello, G.; Montini, L.; Pennisi, M.A.; Spanu, T.; Zuppi, C.; et al. Clinical and Microbiological Outcome in Septic Patients with Extremely Low 25-Hydroxyvitamin D Levels at Initiation of Critical Care. Clin. Microbiol. Infect. 2016, 22, 456.e7–456.e13. [Google Scholar] [CrossRef] [PubMed]
- Upala, S.; Sanguankeo, A.; Permpalung, N. Significant Association between Vitamin D Deficiency and Sepsis: A Systematic Review and Meta-Analysis. BMC Anesthesiol. 2015, 15, 84. [Google Scholar] [CrossRef]
- Amrein, K.; Zajic, P.; Schnedl, C.; Waltensdorfer, A.; Fruhwald, S.; Holl, A.; Purkart, T.; Wünsch, G.; Valentin, T.; Grisold, A.; et al. Vitamin D Status and Its Association with Season, Hospital and Sepsis Mortality in Critical Illness. Crit. Care 2014, 18, R47. [Google Scholar] [CrossRef]
- Rech, M.A.; Hunsaker, T.; Rodriguez, J. Deficiency in 25-Hydroxyvitamin D and 30-Day Mortality in Patients with Severe Sepsis and Septic Shock. Am. J. Crit. Care 2014, 23, e72–e79. [Google Scholar] [CrossRef]
- Higgins, D.M.; Wischmeyer, P.E.; Queensland, K.M.; Sillau, S.H.; Sufit, A.J.; Heyland, D.K. Relationship of Vitamin D Deficiency to Clinical Outcomes in Critically Ill Patients. J. Parenter. Enter. Nutr. 2012, 36, 713–720. [Google Scholar] [CrossRef]
- Ginde, A.A.; Camargo, C.A.; Shapiro, N.I. Vitamin D Insufficiency and Sepsis Severity in Emergency Department Patients with Suspected Infection. Acad. Emerg. Med. 2011, 18, 551–554. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, Y.; Mei, X.; Zhong, J.; Huang, F. Circulating Micronutrient Levels and Their Association with Sepsis Susceptibility and Severity: A Mendelian Randomization Study. Front. Genet. 2024, 15, 1353118. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.; Meng, Z.; Shi, Y.; Zheng, R.; Pan, J.; Qian, S. Causal Effects of Genetically Vitamins and Sepsis Risk: A Two-Sample Mendelian Randomization Study. BMC Infect. Dis. 2023, 23, 766. [Google Scholar] [CrossRef]
- Ozdemir, A.A.; Cag, Y. Neonatal Vitamin D Status and the Risk of Neonatal Sepsis: Vitamin D Status and Neonatal Sepsis. Pak. J. Med. Sci. 2019, 35, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Cizmeci, M.N.; Kanburoglu, M.K.; Akelma, A.Z.; Ayyildiz, A.; Kutukoglu, I.; Malli, D.D.; Tatli, M.M. Cord-Blood 25-Hydroxyvitamin D Levels and Risk of Early-Onset Neonatal Sepsis: A Case–Control Study from a Tertiary Care Center in Turkey. Eur. J. Pediatr. 2015, 174, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, M.; Cekmez, F.; Buyukkale, G.; Erener-Ercan, T.; Demir, F.; Tunc, T.; Aydın, F.N.; Aydemir, G. Lower Vitamin D Levels Are Associated with Increased Risk of Early-Onset Neonatal Sepsis in Term Infants. J. Perinatol. 2015, 35, 39–45. [Google Scholar] [CrossRef]
- Workneh Bitew, Z.; Worku, T.; Alemu, A. Effects of Vitamin D on Neonatal Sepsis: A Systematic Review and Meta-analysis. Food Sci. Nutr. 2021, 9, 375–388. [Google Scholar] [CrossRef]
- Jeengar, B.; Gothwal, S.; Meena, K.K.; Garg, V.K.; Athwani, V.; Gupta, M.L.; Meena, K.; Bairwa, G.S. Vitamin D Levels and Early Onset Sepsis in Newborns. J. Neonatol. 2021, 35, 64–69. [Google Scholar] [CrossRef]
- He, M.; Cao, T.; Wang, J.; Wang, C.; Wang, Z.; Abdelrahim, M.E.A. Vitamin D Deficiency Relation to Sepsis, Paediatric Risk of Mortality III Score, Need for Ventilation Support, Length of Hospital Stay, and Duration of Mechanical Ventilation in Critically Ill Children: A Meta-analysis. Int. J. Clin. Pract. 2021, 75, e13908. [Google Scholar] [CrossRef]
- Su, G.; Jia, D. Vitamin D in Acute and Critically Sick Children with a Subgroup of Sepsis and Mortality: A Meta-Analysis. Nutr. Cancer 2021, 73, 1118–1125. [Google Scholar] [CrossRef]
- Onwuneme, C.; Carroll, A.; Doherty, D.; Bruell, H.; Segurado, R.; Kilbane, M.; Murphy, N.; McKenna, M.J.; Molloy, E.J. Inadequate Vitamin D Levels Are Associated with Culture Positive Sepsis and Poor Outcomes in Paediatric Intensive Care. Acta Paediatr. 2015, 104, e433–e438. [Google Scholar] [CrossRef]
- Razavi Khorasani, N.; Moazzami, B.; Zahedi Tajrishi, F.; Mohammadpour, Z.; Rouhi, F.; Alizadeh-Navaei, R.; Ghadimi, R. The Association Between Low Levels of Vitamin D and Clinical Outcomes in Critically-Ill Children: A Systematic Review and Meta-Analysis. Fetal Pediatr. Pathol. 2020, 39, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Cariolou, M.; Cupp, M.A.; Evangelou, E.; Tzoulaki, I.; Berlanga-Taylor, A.J. Importance of Vitamin D in Acute and Critically Ill Children with Subgroup Analyses of Sepsis and Respiratory Tract Infections: A Systematic Review and Meta-Analysis. BMJ Open 2019, 9, e027666. [Google Scholar] [CrossRef] [PubMed]
- Donayeva, A.; Amanzholkyzy, A.; Nurgaliyeva, R.; Gubasheva, G.; Saparbayev, S.; Ayaganov, D.; Kaldybayeva, A.; Abdelazim, I.A.; Farghali, M.M. Vitamin D and Vitamin D Receptor Polymorphism in Asian Adolescents with Primary Dysmenorrhea. BMC Womens Health 2023, 23, 414. [Google Scholar] [CrossRef] [PubMed]
- Say, B.; Uras, N.; Sahin, S.; Degirmencioglu, H.; Oguz, S.S.; Canpolat, F.E. Effects of Cord Blood Vitamin D Levels on the Risk of Neonatal Sepsis in Premature Infants. Korean J. Pediatr. 2017, 60, 248. [Google Scholar] [CrossRef]
- Xiao, D.; Zhang, X.; Ying, J.; Zhou, Y.; Li, X.; Mu, D.; Qu, Y. Association between Vitamin D Status and Sepsis in Children: A Meta-Analysis of Observational Studies. Clin. Nutr. 2020, 39, 1735–1741. [Google Scholar] [CrossRef]
- Kim, I.; Kim, S.S.; Song, J.I.; Yoon, S.H.; Park, G.Y.; Lee, Y.-W. Association between Vitamin D Level at Birth and Respiratory Morbidities in Very-Low-Birth-Weight Infants. Korean J. Pediatr. 2019, 62, 166–172. [Google Scholar] [CrossRef]
- Arnson, Y.; Gringauz, I.; Itzhaky, D.; Amital, H. Vitamin D Deficiency Is Associated with Poor Outcomes and Increased Mortality in Severely Ill Patients. QJM 2012, 105, 633–639. [Google Scholar] [CrossRef]
- Han, J.E.; Jones, J.L.; Tangpricha, V.; Brown, M.A.; Hao, L.; Hebbar, G.; Lee, M.J.; Liu, S.; Brown, L.A.S.; Ziegler, T.R.; et al. High Dose Vitamin D Administration in Ventilated Intensive Care Unit Patients: A Pilot Double Blind Randomized Controlled Trial. J. Clin. Transl. Endocrinol. 2016, 4, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Sourij, H.; Wagner, G.; Holl, A.; Pieber, T.R.; Smolle, K.H.; Stojakovic, T.; Schnedl, C.; Dobnig, H. Short-Term Effects of High-Dose Oral Vitamin D3 in Critically Ill Vitamin D Deficient Patients: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Crit. Care 2011, 15, R104. [Google Scholar] [CrossRef]
- Sistanizad, M.; Salarian, S.; Kouchek, M.; Shojaei, S.; Miri, M.; Masbough, F. Effect of Calcitriol Supplementation on Infectious Biomarkers in Patients with Positive Systemic Inflammatory Response: A Randomized Controlled Trial. Ann. Med. Surg. 2024, 86, 875–880. [Google Scholar] [CrossRef]
- Sarhan, N.; Abou Warda, A.E.; Sarhan, R.M.; Boshra, M.S.; Mostafa-Hedeab, G.; ALruwaili, B.F.; Ibrahim, H.S.G.; Schaalan, M.F.; Fathy, S. Evidence for the Efficacy of a High Dose of Vitamin D on the Hyperinflammation State in Moderate-to-Severe COVID-19 Patients: A Randomized Clinical Trial. Med. Kaunas Lith. 2022, 58, 1358. [Google Scholar] [CrossRef] [PubMed]
- Miri, M.; Kouchek, M.; Rahat Dahmardeh, A.; Sistanizad, M. Effect of High-Dose Vitamin D on Duration of Mechanical Ventilation in ICU Patients. Iran. J. Pharm. Res. 2019, 18, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Shichen, M.; Liang, Z.; Yu, S.; Zhao, M.; Zhang, L.; Lv, R.; Liu, Y.; Chang, P.; Liu, Z. Potential Benefits of Vitamin D for Sepsis Prophylaxis in Critical Ill Patients. Front. Nutr. 2023, 10, 1073894. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhu, Y.; Zheng, X.; Li, T.; Niu, K.; Wang, Z.; Lu, X.; Zhang, Y.; Shen, C. Vitamin D Supplementation during Intensive Care Unit Stay Is Associated with Improved Outcomes in Critically Ill Patients with Sepsis: A Cohort Study. Nutrients 2023, 15, 2924. [Google Scholar] [CrossRef]
- Gomaa, A.A.; Abdel-Wadood, Y.A.; Thabet, R.H.; Gomaa, G.A. Pharmacological Evaluation of Vitamin D in COVID-19 and Long COVID-19: Recent Studies Confirm Clinical Validation and Highlight Metformin to Improve VDR Sensitivity and Efficacy. Inflammopharmacology 2024, 32, 249–271. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, F.; Tang, J.; Jia, L.; Feng, Y.; Xu, P.; Faramand, A. Association between Vitamin D Supplementation and Mortality: Systematic Review and Meta-Analysis. BMJ 2019, 366, l4673. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute PETAL Clinical Trials Network; Ginde, A.A.; Brower, R.G.; Caterino, J.M.; Finck, L.; Banner-Goodspeed, V.M.; Grissom, C.K.; Hayden, D.; Hough, C.L.; Hyzy, R.C.; et al. Early High-Dose Vitamin D3 for Critically Ill, Vitamin D-Deficient Patients. N. Engl. J. Med. 2019, 381, 2529–2540. [Google Scholar] [CrossRef]
- Leaf, D.E.; Raed, A.; Donnino, M.W.; Ginde, A.A.; Waikar, S.S. Randomized Controlled Trial of Calcitriol in Severe Sepsis. Am. J. Respir. Crit. Care Med. 2014, 190, 533–541. [Google Scholar] [CrossRef]
- Amrein, K.; Schnedl, C.; Holl, A.; Riedl, R.; Christopher, K.B.; Pachler, C.; Urbanic Purkart, T.; Waltensdorfer, A.; Münch, A.; Warnkross, H.; et al. Effect of High-Dose Vitamin D3 on Hospital Length of Stay in Critically Ill Patients with Vitamin D Deficiency: The VITdAL-ICU Randomized Clinical Trial. JAMA 2014, 312, 1520–1530. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Gao, L.; Cao, Z.; Wang, Q. Effects of a Single Dose of Vitamin D in Septic Children: A Randomized, Double-Blinded, Controlled Trial. J. Int. Med. Res. 2020, 48, 300060520926890. [Google Scholar] [CrossRef]
- Hagag, A.A.; El Frargy, M.S.; Houdeeb, H.A. Therapeutic Value of Vitamin D as an Adjuvant Therapy in Neonates with Sepsis. Infect. Disord.—Drug Targets 2020, 20, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hady, H.; Yahia, S.; Megahed, A.; Mosbah, A.; Seif, B.; Nageh, E.; Bhattacharjee, I.; Aly, H. Mediators in Preterm Infants With Late-Onset Sepsis: A Randomized Controlled Trial. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 578–584. [Google Scholar] [CrossRef]
- Smolders, J.; Peelen, E.; Thewissen, M.; Menheere, P.; Tervaert, J.W.C.; Hupperts, R.; Damoiseaux, J. The Relevance of Vitamin D Receptor Gene Polymorphisms for Vitamin D Research in Multiple Sclerosis. Autoimmun. Rev. 2009, 8, 621–626. [Google Scholar] [CrossRef]
- Tourkochristou, E.; Tsounis, E.P.; Tzoupis, H.; Aggeletopoulou, I.; Tsintoni, A.; Lourida, T.; Diamantopoulou, G.; Zisimopoulos, K.; Kafentzi, T.; de Lastic, A.-L.; et al. The Influence of Single Nucleotide Polymorphisms on Vitamin D Receptor Protein Levels and Function in Chronic Liver Disease. Int. J. Mol. Sci. 2023, 24, 11404. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Lu, X.; Li, W.; Wang, Y.; Li, N.; Chen, Y.; Zhang, L.; Niu, W.; Zhang, Q. Vitamin D Receptor Is a Sepsis-Susceptibility Gene in Chinese Children. Med. Sci. Monit. 2021, 27, e932518. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ru, J.; Li, Z.; Jiang, X.; Fan, C. Lower Vitamin D Levels and VDR FokI Variants Are Associated with Susceptibility to Sepsis: A Hospital-Based Case-Control Study. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2022, 27, 188–195. [Google Scholar] [CrossRef]
- Bozgul, S.M.K.; Emecen, D.A.; Akarca, F.K.; Bozkurt, D.; Aydin, O.; Koca, D.; Can, O.; Unalp, O.V.; Atik, T. Association between Vitamin D Receptor Gene FokI Polymorphism and Mortality in Patients with Sepsis. Mol. Biol. Rep. 2023, 51, 44. [Google Scholar] [CrossRef]
- Darnifayanti, D.; Rizki, D.R.; Amirah, S.; Abdurrahman, M.F.; Akmal, M.; Abdulmadjid, S.N.; Yusuf, S.; Iqhrammullah, M. Association between Vitamin D Receptor Gene Variants and Neonatal Sepsis: A Systematic Review and Meta-Analysis. J. Infect. Public Health 2024, 17, 518–526. [Google Scholar] [CrossRef]
- Protas, V.V.; Pogossyan, G.P.; Li, K.G. Frequency of Rs731236, Rs7975232 and Rs1544410 Single Nucleotide Polymorphisms of Vitamin-D Receptor (VDR) Gene among the Kazakh Ethnic Group. Bull. Karaganda Univ. “Biol. Med. Geogr. Ser.” 2024, 11429, 57–63. [Google Scholar] [CrossRef]
- van der Poll, T.; Opal, S.M. Host-Pathogen Interactions in Sepsis. Lancet Infect. Dis. 2008, 8, 32–43. [Google Scholar] [CrossRef]
- Gyawali, B.; Ramakrishna, K.; Dhamoon, A.S. Sepsis: The Evolution in Definition, Pathophysiology, and Management. SAGE Open Med. 2019, 7, 205031211983504. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Immunosuppression in Sepsis: A Novel Understanding of the Disorder and a New Therapeutic Approach. Lancet Infect. Dis. 2013, 13, 260–268. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy. Nat. Rev. Immunol. 2013, 13, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Tinsley, K.W.; Swanson, P.E.; Schmieg, R.E.; Hui, J.J.; Chang, K.C.; Osborne, D.F.; Freeman, B.D.; Cobb, J.P.; Buchman, T.G.; et al. Sepsis-Induced Apoptosis Causes Progressive Profound Depletion of B and CD4+ T Lymphocytes in Humans. J. Immunol. 2001, 166, 6952–6963. [Google Scholar] [CrossRef] [PubMed]
- Heagy, W.; Hansen, C.; Nieman, K.; Cohen, M.; Richardson, C.; Rodriguez, J.L.; West, M.A. Impaired Ex Vivo Lipopolysaccharide-Stimulated Whole Blood Tumor Necrosis Factor Production May Identify “Septic” Intensive Care Unit Patients. Shock 2000, 14, 271–276; discussion 276–277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Fang, X.; Gao, C.; Song, C.; He, Y.; Zhou, T.; Yang, X.; Shang, Y.; Xu, J. MDSCs in Sepsis-Induced Immunosuppression and Its Potential Therapeutic Targets. Cytokine Growth Factor Rev. 2023, 69, 90–103. [Google Scholar] [CrossRef]
- Beltrán-García, J.; Osca-Verdegal, R.; Romá-Mateo, C.; Carbonell, N.; Ferreres, J.; Rodríguez, M.; Mulet, S.; García-López, E.; Pallardó, F.V.; García-Giménez, J.L. Epigenetic Biomarkers for Human Sepsis and Septic Shock: Insights from Immunosuppression. Epigenomics 2020, 12, 617–646. [Google Scholar] [CrossRef]
- Oami, T.; Watanabe, E.; Hatano, M.; Sunahara, S.; Fujimura, L.; Sakamoto, A.; Ito, C.; Toshimori, K.; Oda, S. Suppression of T Cell Autophagy Results in Decreased Viability and Function of T Cells Through Accelerated Apoptosis in a Murine Sepsis Model. Crit. Care Med. 2017, 45, e77–e85. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, B.; Zheng, X.; Chen, L.; Chen, W.; Fang, Z. The Protective Role of Autophagy in Sepsis. Microb. Pathog. 2019, 131, 106–111. [Google Scholar] [CrossRef]
- Watanabe, E.; Nishida, O.; Kakihana, Y.; Odani, M.; Okamura, T.; Harada, T.; Oda, S. Pharmacokinetics, Pharmacodynamics, and Safety of Nivolumab in Patients With Sepsis-Induced Immunosuppression: A Multicenter, Open-Label Phase 1/2 Study. Shock 2020, 53, 686–694. [Google Scholar] [CrossRef]
- Grover, S.P.; Mackman, N. Tissue Factor: An Essential Mediator of Hemostasis and Trigger of Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 709–725. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; van der Poll, T. Coagulation and Sepsis. Thromb. Res. 2017, 149, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Kerris, E.W.J.; Hoptay, C.; Calderon, T.; Freishtat, R.J. Platelets and Platelet Extracellular Vesicles in Hemostasis and Sepsis. J. Investig. Med. 2020, 68, 813–820. [Google Scholar] [CrossRef]
- Alberelli, M.A.; De Candia, E. Functional Role of Protease Activated Receptors in Vascular Biology. Vascul. Pharmacol. 2014, 62, 72–81. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, X.; Tang, Y.; Qiu, X.; Wang, Y.; Kang, H.; Wu, J.; Wang, Z.; Liu, Y.; Chen, F.; et al. Bacterial Endotoxin Activates the Coagulation Cascade through Gasdermin D-Dependent Phosphatidylserine Exposure. Immunity 2019, 51, 983–996.e6. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.E.; Puskarich, M.A. Sepsis-Induced Tissue Hypoperfusion. Crit. Care Nurs. Clin. N. Am. 2011, 23, 115–125. [Google Scholar] [CrossRef]
- Janoušek, J.; Pilařová, V.; Macáková, K.; Nomura, A.; Veiga-Matos, J.; Silva, D.D.d.; Remião, F.; Saso, L.; Malá-Ládová, K.; Malý, J.; et al. Vitamin D: Sources, Physiological Role, Biokinetics, Deficiency, Therapeutic Use, Toxicity, and Overview of Analytical Methods for Detection of Vitamin D and Its Metabolites. Crit. Rev. Clin. Lab. Sci. 2022, 59, 517–554. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef]
- Wang, S. Epidemiology of Vitamin D in Health and Disease. Nutr. Res. Rev. 2009, 22, 188–203. [Google Scholar] [CrossRef]
- Bolodeoku, J. An Assessment of Automated Vitamin D Measurement Methods Including a Point-of-Care Testing Method, I-CHROMATM Using the Randox International Quality Assurance Scheme (Riqas). Biomed. J. Sci. Tech. Res. 2018, 3, 3457–3463. [Google Scholar] [CrossRef]
- Martens, P.-J.; Gysemans, C.; Verstuyf, A.; Mathieu, A.C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef]
- Nikolac Gabaj, N.; Unic, A.; Miler, M.; Pavicic, T.; Culej, J.; Bolanca, I.; Herman Mahecic, D.; Milevoj Kopcinovic, L.; Vrtaric, A. In Sickness and in Health: Pivotal Role of Vitamin D. Biochem. Medica 2020, 30, 020501. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.J. Vitamin D and the RNA Transcriptome: More than mRNA Regulation. Front. Physiol. 2014, 5, 181. [Google Scholar] [CrossRef]
- Carlberg, C.; Campbell, M.J. Vitamin D Receptor Signaling Mechanisms: Integrated Actions of a Well-Defined Transcription Factor. Steroids 2013, 78, 127–136. [Google Scholar] [CrossRef]
- Carlberg, C. Vitamin D Genomics: From In Vitro to In Vivo. Front. Endocrinol. 2018, 9, 250. [Google Scholar] [CrossRef]
- Haussler, M.R.; Haussler, C.A.; Bartik, L.; Whitfield, G.K.; Hsieh, J.-C.; Slater, S.; Jurutka, P.W. Vitamin D Receptor: Molecular Signaling and Actions of Nutritional Ligands in Disease Prevention. Nutr. Rev. 2008, 66, S98–S112. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C. Genome-Wide (over)View on the Actions of Vitamin D. Front. Physiol. 2014, 5, 167. [Google Scholar] [CrossRef]
- Ramagopalan, S.V.; Heger, A.; Berlanga, A.J.; Maugeri, N.J.; Lincoln, M.R.; Burrell, A.; Handunnetthi, L.; Handel, A.E.; Disanto, G.; Orton, S.-M.; et al. A ChIP-Seq Defined Genome-Wide Map of Vitamin D Receptor Binding: Associations with Disease and Evolution. Genome Res. 2010, 20, 1352–1360. [Google Scholar] [CrossRef]
- Meyer, M.B.; Goetsch, P.D.; Pike, J.W. Genome-Wide Analysis of the VDR/RXR Cistrome in Osteoblast Cells Provides New Mechanistic Insight into the Actions of the Vitamin D Hormone. J. Steroid Biochem. Mol. Biol. 2010, 121, 136–141. [Google Scholar] [CrossRef]
- Carlberg, C.; Seuter, S. A Genomic Perspective on Vitamin D Signaling. Anticancer Res. 2009, 29, 3485–3493. [Google Scholar] [PubMed]
- The Function of the Vitamin D Receptor and a Possible Role of Enhancer RNA in Epigenomic Regulation of Target Genes: Implications for Bone Metabolism. PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/30899718/ (accessed on 20 October 2024).
- Tuoresmäki, P.; Väisänen, S.; Neme, A.; Heikkinen, S.; Carlberg, C. Patterns of Genome-Wide VDR Locations. PLoS ONE 2014, 9, e96105. [Google Scholar] [CrossRef]
- Haussler, M.R.; Jurutka, P.W.; Mizwicki, M.; Norman, A.W. Vitamin D Receptor (VDR)-Mediated Actions of 1α,25(OH)2vitamin D3: Genomic and Non-Genomic Mechanisms. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 543–559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, J.; Hua, L.; Li, P.; Wu, J.; Shang, S.; Deng, F.; Luo, J.; Liao, M.; Wang, N.; et al. Vitamin D Receptor (VDR) on the Cell Membrane of Mouse Macrophages Participates in the Formation of Lipopolysaccharide Tolerance: mVDR Is Related to the Effect of Artesunate to Reverse LPS Tolerance. Cell Commun. Signal. 2023, 21, 124. [Google Scholar] [CrossRef]
- Donati, S.; Palmini, G.; Aurilia, C.; Falsetti, I.; Miglietta, F.; Iantomasi, T.; Brandi, M.L. Rapid Nontranscriptional Effects of Calcifediol and Calcitriol. Nutrients 2022, 14, 1291. [Google Scholar] [CrossRef] [PubMed]
- Zmijewski, M.A.; Carlberg, C. Vitamin D Receptor(s): In the Nucleus but Also at Membranes? Exp. Dermatol. 2020, 29, 876–884. [Google Scholar] [CrossRef]
- Chun, R.F.; Liu, P.T.; Modlin, R.L.; Adams, J.S.; Hewison, M. Impact of Vitamin D on Immune Function: Lessons Learned from Genome-Wide Analysis. Front. Physiol. 2014, 5, 151. [Google Scholar] [CrossRef]
- Cantorna, M.T. Mechanisms Underlying the Effect of Vitamin D on the Immune System. Proc. Nutr. Soc. 2010, 69, 286–289. [Google Scholar] [CrossRef]
- Bhalla, A.K.; Amento, E.P.; Clemens, T.L.; Holick, M.F.; Krane, S.M. Specific High-Affinity Receptors for 1,25-Dihydroxyvitamin D3 in Human Peripheral Blood Mononuclear Cells: Presence in Monocytes and Induction in T Lymphocytes Following Activation. J. Clin. Endocrinol. Metab. 1983, 57, 1308–1310. [Google Scholar] [CrossRef]
- Provvedini, D.M.; Tsoukas, C.D.; Deftos, L.J.; Manolagas, S.C. 1,25-Dihydroxyvitamin D3 Receptors in Human Leukocytes. Science 1983, 221, 1181–1183. [Google Scholar] [CrossRef]
- Brennan, A.; Katz, D.R.; Nunn, J.D.; Barker, S.; Hewison, M.; Fraher, L.J.; O’Riordan, J.L. Dendritic Cells from Human Tissues Express Receptors for the Immunoregulatory Vitamin D3 Metabolite, Dihydroxycholecalciferol. Immunology 1987, 61, 457–461. [Google Scholar]
- Morgan, J.W.; Kouttab, N.; Ford, D.; Maizel, A.L. Vitamin D-Mediated Gene Regulation in Phenotypically Defined Human B Cell Subpopulations. Endocrinology 2000, 141, 3225–3234. [Google Scholar] [CrossRef]
- Kongsbak, M.; von Essen, M.R.; Levring, T.B.; Schjerling, P.; Woetmann, A.; Ødum, N.; Bonefeld, C.M.; Geisler, C. Vitamin D-Binding Protein Controls T Cell Responses to Vitamin D. BMC Immunol. 2014, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, L.E.; Wood, A.M.; Qureshi, O.S.; Hou, T.Z.; Gardner, D.; Briggs, Z.; Kaur, S.; Raza, K.; Sansom, D.M. Availability of 25-Hydroxyvitamin D(3) to APCs Controls the Balance between Regulatory and Inflammatory T Cell Responses. J. Immunol. 2012, 189, 5155–5164. [Google Scholar] [CrossRef]
- Heine, G.; Niesner, U.; Chang, H.-D.; Steinmeyer, A.; Zügel, U.; Zuberbier, T.; Radbruch, A.; Worm, M. 1,25-Dihydroxyvitamin D(3) Promotes IL-10 Production in Human B Cells. Eur. J. Immunol. 2008, 38, 2210–2218. [Google Scholar] [CrossRef] [PubMed]
- von Essen, M.R.; Kongsbak, M.; Schjerling, P.; Olgaard, K.; Odum, N.; Geisler, C. Vitamin D Controls T Cell Antigen Receptor Signaling and Activation of Human T Cells. Nat. Immunol. 2010, 11, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Esteban, L.; Vidal, M.; Dusso, A. 1alpha-Hydroxylase Transactivation by Gamma-Interferon in Murine Macrophages Requires Enhanced C/EBPbeta Expression and Activation. J. Steroid Biochem. Mol. Biol. 2004, 89–90, 131–137. [Google Scholar] [CrossRef]
- Xu, H.; Soruri, A.; Gieseler, R.K.; Peters, J.H. 1,25-Dihydroxyvitamin D3 Exerts Opposing Effects to IL-4 on MHC Class-II Antigen Expression, Accessory Activity, and Phagocytosis of Human Monocytes. Scand. J. Immunol. 1993, 38, 535–540. [Google Scholar] [CrossRef]
- Murray, P.J.; Wynn, T.A. Protective and Pathogenic Functions of Macrophage Subsets. Nat. Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef]
- Qiu, P.; Liu, Y.; Zhang, J. Review: The Role and Mechanisms of Macrophage Autophagy in Sepsis. Inflammation 2019, 42, 6–19. [Google Scholar] [CrossRef]
- Fang, M.; Zhong, C. Vitamin D Receptor Mediates Liver Ischemia and Reperfusion Injury by Autophagy-Regulated M2 Macrophage Polarization. Turk. J. Biol. Turk Biyol. Derg. 2023, 47, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-Like Receptor Triggering of a Vitamin D-Mediated Human Antimicrobial Response. Science 2006, 311, 1770–1773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Leung, D.Y.M.; Richers, B.N.; Liu, Y.; Remigio, L.K.; Riches, D.W.; Goleva, E. Vitamin D Inhibits Monocyte/Macrophage Proinflammatory Cytokine Production by Targeting MAPK Phosphatase-1. J. Immunol. 2012, 188, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Krutzik, S.R.; Hewison, M.; Liu, P.T.; Robles, J.A.; Stenger, S.; Adams, J.S.; Modlin, R.L. IL-15 Links TLR2/1-Induced Macrophage Differentiation to the Vitamin D-Dependent Antimicrobial Pathway. J. Immunol. 2008, 181, 7115–7120. [Google Scholar] [CrossRef]
- Chan, H.; Li, Q.; Wang, X.; Liu, W.Y.; Hu, W.; Zeng, J.; Xie, C.; Kwong, T.N.Y.; Ho, I.H.T.; Liu, X.; et al. Vitamin D3 and Carbamazepine Protect against Clostridioides Difficile Infection in Mice by Restoring Macrophage Lysosome Acidification. Autophagy 2022, 18, 2050–2067. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, W.; Sun, T.; Huang, Y.; Wang, Y.; Deb, D.K.; Yoon, D.; Kong, J.; Thadhani, R.; Li, Y.C. 1,25-Dihydroxyvitamin D Promotes Negative Feedback Regulation of TLR Signaling via Targeting microRNA-155-SOCS1 in Macrophages. J. Immunol. 2013, 190, 3687–3695. [Google Scholar] [CrossRef]
- Dong, B.; Zhou, Y.; Wang, W.; Scott, J.; Kim, K.; Sun, Z.; Guo, Q.; Lu, Y.; Gonzales, N.M.; Wu, H.; et al. Vitamin D Receptor Activation in Liver Macrophages Ameliorates Hepatic Inflammation, Steatosis, and Insulin Resistance in Mice. Hepatology 2020, 71, 1559–1574. [Google Scholar] [CrossRef]
- Wittke, A.; Chang, A.; Froicu, M.; Harandi, O.F.; Weaver, V.; August, A.; Paulson, R.F.; Cantorna, M.T. Vitamin D Receptor Expression by the Lung Micro-Environment Is Required for Maximal Induction of Lung Inflammation. Arch. Biochem. Biophys. 2007, 460, 306–313. [Google Scholar] [CrossRef]
- Griffin, M.D.; Lutz, W.; Phan, V.A.; Bachman, L.A.; McKean, D.J.; Kumar, R. Dendritic Cell Modulation by 1alpha,25 Dihydroxyvitamin D3 and Its Analogs: A Vitamin D Receptor-Dependent Pathway That Promotes a Persistent State of Immaturity in Vitro and in Vivo. Proc. Natl. Acad. Sci. USA 2001, 98, 6800–6805. [Google Scholar] [CrossRef]
- Ferreira, G.B.; van Etten, E.; Verstuyf, A.; Waer, M.; Overbergh, L.; Gysemans, C.; Mathieu, C. 1,25-Dihydroxyvitamin D3 Alters Murine Dendritic Cell Behaviour in Vitro and in Vivo. Diabetes Metab. Res. Rev. 2011, 27, 933–941. [Google Scholar] [CrossRef]
- Penna, G.; Adorini, L. 1 Alpha,25-Dihydroxyvitamin D3 Inhibits Differentiation, Maturation, Activation, and Survival of Dendritic Cells Leading to Impaired Alloreactive T Cell Activation. J. Immunol. 2000, 164, 2405–2411. [Google Scholar] [CrossRef]
- Piemonti, L.; Monti, P.; Sironi, M.; Fraticelli, P.; Leone, B.E.; Dal Cin, E.; Allavena, P.; Di Carlo, V. Vitamin D3 Affects Differentiation, Maturation, and Function of Human Monocyte-Derived Dendritic Cells. J. Immunol. 2000, 164, 4443–4451. [Google Scholar] [CrossRef]
- Unger, W.W.J.; Laban, S.; Kleijwegt, F.S.; van der Slik, A.R.; Roep, B.O. Induction of Treg by Monocyte-Derived DC Modulated by Vitamin D3 or Dexamethasone: Differential Role for PD-L1. Eur. J. Immunol. 2009, 39, 3147–3159. [Google Scholar] [CrossRef] [PubMed]
- van Halteren, A.G.S.; Tysma, O.M.; van Etten, E.; Mathieu, C.; Roep, B.O. 1alpha,25-Dihydroxyvitamin D3 or Analogue Treated Dendritic Cells Modulate Human Autoreactive T Cells via the Selective Induction of Apoptosis. J. Autoimmun. 2004, 23, 233–239. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, D.; Cippitelli, M.; Cocciolo, M.G.; Mazzeo, D.; Di Lucia, P.; Lang, R.; Sinigaglia, F.; Panina-Bordignon, P. Inhibition of IL-12 Production by 1,25-Dihydroxyvitamin D3. Involvement of NF-kappaB Downregulation in Transcriptional Repression of the P40 Gene. J. Clin. Investig. 1998, 101, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin Effects on the Immune System: Vitamins A and D Take Centre Stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef]
- Barragan, M.; Good, M.; Kolls, J.K. Regulation of Dendritic Cell Function by Vitamin D. Nutrients 2015, 7, 8127–8151. [Google Scholar] [CrossRef]
- Adorini, L.; Penna, G. Induction of Tolerogenic Dendritic Cells by Vitamin D Receptor Agonists. In Dendritic Cells. Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 251–273. [Google Scholar] [CrossRef]
- Bscheider, M.; Butcher, E.C. Vitamin D Immunoregulation through Dendritic Cells. Immunology 2016, 148, 227–236. [Google Scholar] [CrossRef]
- Chen, S.; Sims, G.P.; Chen, X.X.; Gu, Y.Y.; Chen, S.; Lipsky, P.E. Modulatory Effects of 1,25-Dihydroxyvitamin D3 on Human B Cell Differentiation. J. Immunol. 2007, 179, 1634–1647. [Google Scholar] [CrossRef]
- Lemire, J.M.; Adams, J.S.; Sakai, R.; Jordan, S.C. 1 Alpha,25-Dihydroxyvitamin D3 Suppresses Proliferation and Immunoglobulin Production by Normal Human Peripheral Blood Mononuclear Cells. J. Clin. Investig. 1984, 74, 657–661. [Google Scholar] [CrossRef]
- James, J.; Weaver, V.; Cantorna, M.T. Control of Circulating IgE by the Vitamin D Receptor In Vivo Involves B Cell Intrinsic and Extrinsic Mechanisms. J. Immunol. 2017, 198, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, A.-K.; Nagakubo, D.; Hieshima, K.; Nakayama, T.; Jin, Z.; Yoshie, O. 1,25-Dihydroxyvitamin D3 Induces CCR10 Expression in Terminally Differentiating Human B Cells. J. Immunol. 2008, 180, 2786–2795. [Google Scholar] [CrossRef]
- Drozdenko, G.; Scheel, T.; Heine, G.; Baumgrass, R.; Worm, M. Impaired T Cell Activation and Cytokine Production by Calcitriol-Primed Human B Cells. Clin. Exp. Immunol. 2014, 178, 364–372. [Google Scholar] [CrossRef]
- Danner, O.K.; Matthews, L.R.; Francis, S.; Rao, V.N.; Harvey, C.P.; Tobin, R.P.; Wilson, K.L.; Alema-Mensah, E.; Newell Rogers, M.K.; Childs, E.W. Vitamin D3 Suppresses Class II Invariant Chain Peptide Expression on Activated B-Lymphocytes: A Plausible Mechanism for Downregulation of Acute Inflammatory Conditions. J. Nutr. Metab. 2016, 2016, 4280876. [Google Scholar] [CrossRef]
- Geldmeyer-Hilt, K.; Heine, G.; Hartmann, B.; Baumgrass, R.; Radbruch, A.; Worm, M. 1,25-Dihydroxyvitamin D3 Impairs NF-κB Activation in Human Naïve B Cells. Biochem. Biophys. Res. Commun. 2011, 407, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Kamen, D.L.; Tangpricha, V. Vitamin D and Molecular Actions on the Immune System: Modulation of Innate and Autoimmunity. J. Mol. Med. Berl. Ger. 2010, 88, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.O.; Samaras, N.; Samaras, D.; Aspinall, R. How Important Is Vitamin D in Preventing Infections? Osteoporos. Int. 2013, 24, 1537–1553. [Google Scholar] [CrossRef]
- van Etten, E.; Mathieu, C. Immunoregulation by 1,25-Dihydroxyvitamin D3: Basic Concepts. J. Steroid Biochem. Mol. Biol. 2005, 97, 93–101. [Google Scholar] [CrossRef]
- Pichler, J.; Gerstmayr, M.; Szépfalusi, Z.; Urbanek, R.; Peterlik, M.; Willheim, M. 1 Alpha,25(OH)2D3 Inhibits Not Only Th1 but Also Th2 Differentiation in Human Cord Blood T Cells. Pediatr. Res. 2002, 52, 12–18. [Google Scholar] [CrossRef]
- Lemire, J.M.; Adams, J.S.; Kermani-Arab, V.; Bakke, A.C.; Sakai, R.; Jordan, S.C. 1,25-Dihydroxyvitamin D3 Suppresses Human T Helper/Inducer Lymphocyte Activity in Vitro. J. Immunol. 1985, 134, 3032–3035. [Google Scholar] [CrossRef]
- Yu, S.; Cantorna, M.T. The Vitamin D Receptor Is Required for iNKT Cell Development. Proc. Natl. Acad. Sci. USA 2008, 105, 5207–5212. [Google Scholar] [CrossRef] [PubMed]
- Staeva-Vieira, T.P.; Freedman, L.P. 1,25-Dihydroxyvitamin D3 Inhibits IFN-Gamma and IL-4 Levels during in Vitro Polarization of Primary Murine CD4+ T Cells. J. Immunol. 2002, 168, 1181–1189. [Google Scholar] [CrossRef]
- Alroy, I.; Towers, T.L.; Freedman, L.P. Transcriptional Repression of the Interleukin-2 Gene by Vitamin D3: Direct Inhibition of NFATp/AP-1 Complex Formation by a Nuclear Hormone Receptor. Mol. Cell. Biol. 1995, 15, 5789–5799. [Google Scholar] [CrossRef]
- Van Belle, T.L.; Gysemans, C.; Mathieu, C. Vitamin D in Autoimmune, Infectious and Allergic Diseases: A Vital Player? Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 617–632. [Google Scholar] [CrossRef]
- Lemire, J.M.; Archer, D.C.; Beck, L.; Spiegelberg, H.L. Immunosuppressive Actions of 1,25-Dihydroxyvitamin D3: Preferential Inhibition of Th1 Functions. J. Nutr. 1995, 125, 1704S–1708S. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.T.; Lee, Y.K.; Maynard, C.L.; Oliver, J.R.; Bikle, D.D.; Jetten, A.M.; Weaver, C.T. Lineage-Specific Effects of 1,25-Dihydroxyvitamin D(3) on the Development of Effector CD4 T Cells. J. Biol. Chem. 2011, 286, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Baeke, F.; Korf, H.; Overbergh, L.; Verstuyf, A.; Thorrez, L.; Van Lommel, L.; Waer, M.; Schuit, F.; Gysemans, C.; Mathieu, C. The Vitamin D Analog, TX527, Promotes a Human CD4+CD25highCD127low Regulatory T Cell Profile and Induces a Migratory Signature Specific for Homing to Sites of Inflammation. J. Immunol. 2011, 186, 132–142. [Google Scholar] [CrossRef]
- Cantorna, M.T.; Snyder, L.; Lin, Y.-D.; Yang, L. Vitamin D and 1,25(OH)2D Regulation of T Cells. Nutrients 2015, 7, 3011–3021. [Google Scholar] [CrossRef]
- Cippitelli, M.; Santoni, A. Vitamin D3: A Transcriptional Modulator of the Interferon-Gamma Gene. Eur. J. Immunol. 1998, 28, 3017–3030. [Google Scholar] [CrossRef]
- Boonstra, A.; Barrat, F.J.; Crain, C.; Heath, V.L.; Savelkoul, H.F.; O’Garra, A. 1alpha,25-Dihydroxyvitamin D3 Has a Direct Effect on Naive CD4(+) T Cells to Enhance the Development of Th2 Cells. J. Immunol. 2001, 167, 4974–4980. [Google Scholar] [CrossRef]
- Khoo, A.-L.; Joosten, I.; Michels, M.; Woestenenk, R.; Preijers, F.; He, X.-H.; Netea, M.G.; van der Ven, A.J.A.M.; Koenen, H.J.P.M. 1,25-Dihydroxyvitamin D3 Inhibits Proliferation but Not the Suppressive Function of Regulatory T Cells in the Absence of Antigen-Presenting Cells. Immunology 2011, 134, 459–468. [Google Scholar] [CrossRef]
- Peck, A.; Mellins, E.D. Precarious Balance: Th17 Cells in Host Defense. Infect. Immun. 2010, 78, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Chung, Y.; Dong, C. Vitamin D Suppresses Th17 Cytokine Production by Inducing C/EBP Homologous Protein (CHOP) Expression. J. Biol. Chem. 2010, 285, 38751–38755. [Google Scholar] [CrossRef] [PubMed]
- Lysandropoulos, A.P.; Jaquiéry, E.; Jilek, S.; Pantaleo, G.; Schluep, M.; Du Pasquier, R.A. Vitamin D Has a Direct Immunomodulatory Effect on CD8+ T Cells of Patients with Early Multiple Sclerosis and Healthy Control Subjects. J. Neuroimmunol. 2011, 233, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cencioni, M.T.; Angelini, D.F.; Borsellino, G.; Battistini, L.; Brosnan, C.F. Transcriptional Profiling of Gamma Delta T Cells Identifies a Role for Vitamin D in the Immunoregulation of the V Gamma 9V Delta 2 Response to Phosphate-Containing Ligands. J. Immunol. 2005, 174, 6144–6152. [Google Scholar] [CrossRef]
- Okeke, E.B.; Uzonna, J.E. The Pivotal Role of Regulatory T Cells in the Regulation of Innate Immune Cells. Front. Immunol. 2019, 10, 680. [Google Scholar] [CrossRef]
- Jeffery, L.E.; Burke, F.; Mura, M.; Zheng, Y.; Qureshi, O.S.; Hewison, M.; Walker, L.S.K.; Lammas, D.A.; Raza, K.; Sansom, D.M. 1,25-Dihydroxyvitamin D3 and IL-2 Combine to Inhibit T Cell Production of Inflammatory Cytokines and Promote Development of Regulatory T Cells Expressing CTLA-4 and FoxP3. J. Immunol. 2009, 183, 5458–5467. [Google Scholar] [CrossRef]
- Joshi, S.; Pantalena, L.-C.; Liu, X.K.; Gaffen, S.L.; Liu, H.; Rohowsky-Kochan, C.; Ichiyama, K.; Yoshimura, A.; Steinman, L.; Christakos, S.; et al. 1,25-Dihydroxyvitamin D(3) Ameliorates Th17 Autoimmunity via Transcriptional Modulation of Interleukin-17A. Mol. Cell. Biol. 2011, 31, 3653–3669. [Google Scholar] [CrossRef]
- Kang, S.W.; Kim, S.H.; Lee, N.; Lee, W.-W.; Hwang, K.-A.; Shin, M.S.; Lee, S.-H.; Kim, W.-U.; Kang, I. 1,25-Dihyroxyvitamin D3 Promotes FOXP3 Expression via Binding to Vitamin D Response Elements in Its Conserved Noncoding Sequence Region. J. Immunol. 2012, 188, 5276–5282. [Google Scholar] [CrossRef]
- Farias, A.S.; Spagnol, G.S.; Bordeaux-Rego, P.; Oliveira, C.O.F.; Fontana, A.G.M.; de Paula, R.F.O.; Santos, M.P.A.; Pradella, F.; Moraes, A.S.; Oliveira, E.C.; et al. Vitamin D3 Induces IDO+ Tolerogenic DCs and Enhances Treg, Reducing the Severity of EAE. CNS Neurosci. Ther. 2013, 19, 269–277. [Google Scholar] [CrossRef]
- Bansal, A.S.; Henriquez, F.; Sumar, N.; Patel, S. T Helper Cell Subsets in Arthritis and the Benefits of Immunomodulation by 1,25(OH)2 Vitamin D. Rheumatol. Int. 2012, 32, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Di Rosa, M.; Malaguarnera, M.; Nicoletti, F.; Malaguarnera, L. Vitamin D3: A Helpful Immuno-Modulator. Immunology 2011, 134, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Ooi, J.H.; Chen, J.; Cantorna, M.T. Vitamin D Regulation of Immune Function in the Gut: Why Do T Cells Have Vitamin D Receptors? Mol. Aspects Med. 2012, 33, 77–82. [Google Scholar] [CrossRef]
- Gombart, A.F.; Borregaard, N.; Koeffler, H.P. Human Cathelicidin Antimicrobial Peptide (CAMP) Gene Is a Direct Target of the Vitamin D Receptor and Is Strongly up-Regulated in Myeloid Cells by 1,25-Dihydroxyvitamin D3. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2005, 19, 1067–1077. [Google Scholar] [CrossRef]
- Wang, T.-T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; et al. Cutting Edge: 1,25-Dihydroxyvitamin D3 Is a Direct Inducer of Antimicrobial Peptide Gene Expression. J. Immunol. 2004, 173, 2909–2912. [Google Scholar] [CrossRef]
- Ramos, R.; Silva, J.P.; Rodrigues, A.C.; Costa, R.; Guardão, L.; Schmitt, F.; Soares, R.; Vilanova, M.; Domingues, L.; Gama, M. Wound Healing Activity of the Human Antimicrobial Peptide LL37. Peptides 2011, 32, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, O.E.; Follin, P.; Johnsen, A.H.; Calafat, J.; Tjabringa, G.S.; Hiemstra, P.S.; Borregaard, N. Human Cathelicidin, hCAP-18, Is Processed to the Antimicrobial Peptide LL-37 by Extracellular Cleavage with Proteinase 3. Blood 2001, 97, 3951–3959. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Silwal, P.; Kim, I.; Modlin, R.L.; Jo, E.-K. Vitamin D-Cathelicidin Axis: At the Crossroads between Protective Immunity and Pathological Inflammation during Infection. Immune Netw. 2020, 20, e12. [Google Scholar] [CrossRef]
- Guo, Y.; Farhan, M.H.R.; Gan, F.; Yang, X.; Li, Y.; Huang, L.; Wang, X.; Cheng, G. Advances in Artificially Designed Antibacterial Active Antimicrobial Peptides. Biotechnol. Bioeng. 2025, 122, 247–264. [Google Scholar] [CrossRef]
- Wang, G.; Narayana, J.L.; Mishra, B.; Zhang, Y.; Wang, F.; Wang, C.; Zarena, D.; Lushnikova, T.; Wang, X. Design of Antimicrobial Peptides: Progress Made with Human Cathelicidin LL-37. Adv. Exp. Med. Biol. 2019, 1117, 215–240. [Google Scholar] [CrossRef]
- Gottlieb, C.; Henrich, M.; Liu, P.T.; Yacoubian, V.; Wang, J.; Chun, R.; Adams, J.S. High-Throughput CAMP Assay (HiTCA): A Novel Tool for Evaluating the Vitamin D-Dependent Antimicrobial Response. Nutrients 2023, 15, 1380. [Google Scholar] [CrossRef] [PubMed]
- El Abd, A.; Dasari, H.; Dodin, P.; Trottier, H.; Ducharme, F.M. Associations between Vitamin D Status and Biomarkers Linked with Inflammation in Patients with Asthma: A Systematic Review and Meta-Analysis of Interventional and Observational Studies. Respir. Res. 2024, 25, 344. [Google Scholar] [CrossRef] [PubMed]
- Laaksi, A.; Kyröläinen, H.; Pihlajamäki, H.; Vaara, J.P.; Luukkaala, T.; Laaksi, I. Effects of Vitamin D Supplementation and Baseline Vitamin D Status on Acute Respiratory Infections and Cathelicidin: A Randomized Controlled Trial. Open Forum Infect. Dis. 2024, 11, ofae482. [Google Scholar] [CrossRef]
- Lauretani, F.; Salvi, M.; Zucchini, I.; Testa, C.; Cattabiani, C.; Arisi, A.; Maggio, M. Relationship between Vitamin D and Immunity in Older People with COVID-19. Int. J. Environ. Res. Public Health 2023, 20, 5432. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.-K.; Ng, Y.L.; Ahidjo, B.A.; Aw, Z.Q.; Chen, H.; Wong, Y.H.; Lee, R.C.H.; Loe, M.W.C.; Liu, J.; Tan, K.S.; et al. Evaluation of In Vitro and In Vivo Antiviral Activities of Vitamin D for SARS-CoV-2 and Variants. Pharmaceutics 2023, 15, 925. [Google Scholar] [CrossRef]
- van der Does, A.M.; Bergman, P.; Agerberth, B.; Lindbom, L. Induction of the Human Cathelicidin LL-37 as a Novel Treatment against Bacterial Infections. J. Leukoc. Biol. 2012, 92, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.; Heilborn, J.D.; Chamorro Jimenez, C.I.; Hammarsjo, A.; Törmä, H.; Stahle, M. Vitamin D Induces the Antimicrobial Protein hCAP18 in Human Skin. J. Investig. Dermatol. 2005, 124, 1080–1082. [Google Scholar] [CrossRef]
- Kahlenberg, J.M.; Kaplan, M.J. Little Peptide, Big Effects: The Role of LL-37 in Inflammation and Autoimmune Disease. J. Immunol. 2013, 191, 4895–4901. [Google Scholar] [CrossRef]
- Martineau, A.R.; Wilkinson, K.A.; Newton, S.M.; Floto, R.A.; Norman, A.W.; Skolimowska, K.; Davidson, R.N.; Sørensen, O.E.; Kampmann, B.; Griffiths, C.J.; et al. IFN-Gamma- and TNF-Independent Vitamin D-Inducible Human Suppression of Mycobacteria: The Role of Cathelicidin LL-37. J. Immunol. 2007, 178, 7190–7198. [Google Scholar] [CrossRef]
- Dimitrov, V.; White, J.H. Species-Specific Regulation of Innate Immunity by Vitamin D Signaling. J. Steroid Biochem. Mol. Biol. 2016, 164, 246–253. [Google Scholar] [CrossRef]
- Yuk, J.-M.; Shin, D.-M.; Lee, H.-M.; Yang, C.-S.; Jin, H.S.; Kim, K.-K.; Lee, Z.-W.; Lee, S.-H.; Kim, J.-M.; Jo, E.-K. Vitamin D3 Induces Autophagy in Human Monocytes/Macrophages via Cathelicidin. Cell Host Microbe 2009, 6, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Wehkamp, J.; Schauber, J.; Stange, E.F. Defensins and Cathelicidins in Gastrointestinal Infections. Curr. Opin. Gastroenterol. 2007, 23, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Talafha, M.M.; Qasem, A.; Naser, S.A. Mycobacterium Avium Paratuberculosis Infection Suppresses Vitamin D Activation and Cathelicidin Production in Macrophages through Modulation of the TLR2-Dependent P38/MAPK-CYP27B1-VDR-CAMP Axis. Nutrients 2024, 16, 1358. [Google Scholar] [CrossRef]
- Campbell, G.R.; Spector, S.A. Autophagy Induction by Vitamin D Inhibits Both Mycobacterium Tuberculosis and Human Immunodeficiency Virus Type 1. Autophagy 2012, 8, 1523–1525. [Google Scholar] [CrossRef]
- Verway, M.; Bouttier, M.; Wang, T.-T.; Carrier, M.; Calderon, M.; An, B.-S.; Devemy, E.; McIntosh, F.; Divangahi, M.; Behr, M.A.; et al. Vitamin D Induces Interleukin-1β Expression: Paracrine Macrophage Epithelial Signaling Controls M. tuberculosis Infection. PLoS Pathog. 2013, 9, e1003407. [Google Scholar] [CrossRef]
- Fernandez, G.J.; Ramírez-Mejía, J.M.; Castillo, J.A.; Urcuqui-Inchima, S. Vitamin D Modulates Expression of Antimicrobial Peptides and Proinflammatory Cytokines to Restrict Zika Virus Infection in Macrophages. Int. Immunopharmacol. 2023, 119, 110232. [Google Scholar] [CrossRef]
- Tang, X.; Basavarajappa, D.; Haeggström, J.Z.; Wan, M. P2X7 Receptor Regulates Internalization of Antimicrobial Peptide LL-37 by Human Macrophages That Promotes Intracellular Pathogen Clearance. J. Immunol. 2015, 195, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Bhutia, S.K. Vitamin D in Autophagy Signaling for Health and Diseases: Insights on Potential Mechanisms and Future Perspectives. J. Nutr. Biochem. 2022, 99, 108841. [Google Scholar] [CrossRef]
- Zhou, A.; Li, L.; Zhao, G.; Min, L.; Liu, S.; Zhu, S.; Guo, Q.; Liu, C.; Zhang, S.; Li, P. Vitamin D3 Inhibits Helicobacter Pylori Infection by Activating the VitD3/VDR-CAMP Pathway in Mice. Front. Cell. Infect. Microbiol. 2020, 10, 566730. [Google Scholar] [CrossRef]
- Huang, F.-C. Vitamin D Differentially Regulates Salmonella-Induced Intestine Epithelial Autophagy and Interleukin-1β Expression. World J. Gastroenterol. 2016, 22, 10353–10363. [Google Scholar] [CrossRef]
- Sato, E.; Imafuku, S.; Ishii, K.; Itoh, R.; Chou, B.; Soejima, T.; Nakayama, J.; Hiromatsu, K. Vitamin D-Dependent Cathelicidin Inhibits Mycobacterium Marinum Infection in Human Monocytic Cells. J. Dermatol. Sci. 2013, 70, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yang, E.; Shen, L.; Modlin, R.L.; Shen, H.; Chen, Z.W. IL-12+IL-18 Cosignaling in Human Macrophages and Lung Epithelial Cells Activates Cathelicidin and Autophagy, Inhibiting Intracellular Mycobacterial Growth. J. Immunol. 2018, 200, 2405–2417. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, Y.; Lu, R.; Xia, Y.; Zhou, D.; Petrof, E.O.; Claud, E.C.; Chen, D.; Chang, E.B.; Carmeliet, G.; et al. Intestinal Epithelial Vitamin D Receptor Deletion Leads to Defective Autophagy in Colitis. Gut 2015, 64, 1082–1094. [Google Scholar] [CrossRef]
- Lu, R.; Zhang, Y.-G.; Xia, Y.; Zhang, J.; Kaser, A.; Blumberg, R.; Sun, J. Paneth Cell Alertness to Pathogens Maintained by Vitamin D Receptors. Gastroenterology 2021, 160, 1269–1283. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Wu, J.; Li, X.; Liu, X.; Li, P.; Zheng, C.; Wang, Y.; Liu, S.; Zheng, J.; Zhou, H. Artesunate Interacts with the Vitamin D Receptor to Reverse Sepsis-Induced Immunosuppression in a Mouse Model via Enhancing Autophagy. Br. J. Pharmacol. 2020, 177, 4147–4165. [Google Scholar] [CrossRef]
- Li, A.; Zhang, H.; Han, H.; Zhang, W.; Yang, S.; Huang, Z.; Tan, J.; Yi, B. LC3 Promotes the Nuclear Translocation of the Vitamin D Receptor and Decreases Fibrogenic Gene Expression in Proximal Renal Tubules. Metabolism. 2019, 98, 95–103. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, T.; Li, Q.; Ling, Y.; Ma, Y.; Tao, S. SQSTM1 Improves Acute Lung Injury via Inhibiting Airway Epithelium Ferroptosis in a Vitamin D Receptor/Autophagy-Mediated Manner. Free Radic. Biol. Med. 2024, 222, 588–600. [Google Scholar] [CrossRef]
- Lai, T.-C.; Chen, Y.-C.; Cheng, H.-H.; Lee, T.-L.; Tsai, J.-S.; Lee, I.-T.; Peng, K.-T.; Lee, C.-W.; Hsu, L.-F.; Chen, Y.-L. Combined Exposure to Fine Particulate Matter and High Glucose Aggravates Endothelial Damage by Increasing Inflammation and Mitophagy: The Involvement of Vitamin D. Part. Fibre Toxicol. 2022, 19, 25. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, J.; Wu, Y.; Sun, X.; Rao, Z.; Sun, N.; Fu, Y.; Zhang, Z.; Li, J.; Xiao, M.; et al. Parkin Increases the Risk of Colitis by Downregulation of VDR via Autophagy-Lysosome Degradation. Int. J. Biol. Sci. 2023, 19, 1633–1644. [Google Scholar] [CrossRef]
- Abdelmalak, M.F.L.; Abdelrahim, D.S.; George Michael, T.M.A.; Abdel-Maksoud, O.M.; Labib, J.M.W. Vitamin D and Lactoferrin Attenuate Stress-Induced Colitis in Wistar Rats via Enhancing AMPK Expression with Inhibiting mTOR-STAT3 Signaling and Modulating Autophagy. Cell Biochem. Funct. 2023, 41, 211–222. [Google Scholar] [CrossRef]
- Jhun, J.; Woo, J.S.; Kwon, J.Y.; Na, H.S.; Cho, K.-H.; Kim, S.A.; Kim, S.J.; Moon, S.-J.; Park, S.-H.; Cho, M.-L. Vitamin D Attenuates Pain and Cartilage Destruction in OA Animals via Enhancing Autophagic Flux and Attenuating Inflammatory Cell Death. Immune Netw. 2022, 22, e34. [Google Scholar] [CrossRef] [PubMed]
- Vanherwegen, A.-S.; Gysemans, C.; Mathieu, C. Regulation of Immune Function by Vitamin D and Its Use in Diseases of Immunity. Endocrinol. Metab. Clin. N. Am. 2017, 46, 1061–1094. [Google Scholar] [CrossRef]
- Watkins, R.R.; Yamshchikov, A.V.; Lemonovich, T.L.; Salata, R.A. The Role of Vitamin D Deficiency in Sepsis and Potential Therapeutic Implications. J. Infect. 2011, 63, 321–326. [Google Scholar] [CrossRef]
- Cui, P.; Lu, W.; Wang, J.; Wang, F.; Zhang, X.; Hou, X.; Xu, F.; Liang, Y.; Chai, G.; Hao, J. Microglia/Macrophages Require Vitamin D Signaling to Restrain Neuroinflammation and Brain Injury in a Murine Ischemic Stroke Model. J. Neuroinflammation 2023, 20, 63. [Google Scholar] [CrossRef] [PubMed]
- Khoo, A.-L.; Chai, L.Y.A.; Koenen, H.J.P.M.; Oosting, M.; Steinmeyer, A.; Zuegel, U.; Joosten, I.; Netea, M.G.; van der Ven, A.J.A.M. Vitamin D(3) down-Regulates Proinflammatory Cytokine Response to Mycobacterium Tuberculosis through Pattern Recognition Receptors While Inducing Protective Cathelicidin Production. Cytokine 2011, 55, 294–300. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, A.; Malki, A. Vitamin D Signaling in Inflammation and Cancer: Molecular Mechanisms and Therapeutic Implications. Molecules 2020, 25, 3219. [Google Scholar] [CrossRef]
- Fitch, N.; Becker, A.B.; HayGlass, K.T. Vitamin D [1,25(OH)2D3] Differentially Regulates Human Innate Cytokine Responses to Bacterial versus Viral Pattern Recognition Receptor Stimuli. J. Immunol. 2016, 196, 2965–2972. [Google Scholar] [CrossRef]
- Zheng, G.; Wen, N.; Pan, M.; Huang, Y.; Li, Z. Biologically Active 1,25-Dihydroxyvitamin D3 Protects against Experimental Sepsis by Negatively Regulating the Toll-like Receptor 4/Myeloid Differentiation Primary Response Gene 88/Toll-IL-1 Resistance-Domain-Containing Adapter-Inducing Interferon-β Signaling Pathway. Int. J. Mol. Med. 2019, 44, 1151–1160. [Google Scholar] [CrossRef]
- Korf, H.; Wenes, M.; Stijlemans, B.; Takiishi, T.; Robert, S.; Miani, M.; Eizirik, D.L.; Gysemans, C.; Mathieu, C. 1,25-Dihydroxyvitamin D3 Curtails the Inflammatory and T Cell Stimulatory Capacity of Macrophages through an IL-10-Dependent Mechanism. Immunobiology 2012, 217, 1292–1300. [Google Scholar] [CrossRef]
- Dionne, S.; Calderon, M.R.; White, J.H.; Memari, B.; Elimrani, I.; Adelson, B.; Piccirillo, C.; Seidman, E.G. Differential Effect of Vitamin D on NOD2- and TLR-Induced Cytokines in Crohn’s Disease. Mucosal Immunol. 2014, 7, 1405–1415. [Google Scholar] [CrossRef]
- Wang, T.-T.; Dabbas, B.; Laperriere, D.; Bitton, A.J.; Soualhine, H.; Tavera-Mendoza, L.E.; Dionne, S.; Servant, M.J.; Bitton, A.; Seidman, E.G.; et al. Direct and Indirect Induction by 1,25-Dihydroxyvitamin D3 of the NOD2/CARD15-Defensin Β2 Innate Immune Pathway Defective in Crohn Disease. J. Biol. Chem. 2010, 285, 2227–2231. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Ge, X.; Du, J.; Deb, D.K.; Li, Y.C. Vitamin D Receptor Inhibits Nuclear Factor κB Activation by Interacting with IκB Kinase β Protein. J. Biol. Chem. 2013, 288, 19450–19458. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, R.-N.; Wen, Y.; Yin, W.-N.; Bai, D.; Zheng, G.-Y.; Li, J.-S.; Zheng, B.; Wen, J.-K. 1, 25(OH)2D3-Induced Interaction of Vitamin D Receptor with P50 Subunit of NF-κB Suppresses the Interaction between KLF5 and P50, Contributing to Inhibition of LPS-Induced Macrophage Proliferation. Biochem. Biophys. Res. Commun. 2017, 482, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Farmer, P.; Rubin, J.; Nanes, M.S. Integration of the NfκB P65 Subunit into the Vitamin D Receptor Transcriptional Complex: Identification of P65 Domains That Inhibit 1,25-dihydroxyvitamin D3-stimulated Transcription. J. Cell. Biochem. 2004, 92, 833–848. [Google Scholar] [CrossRef]
- Wu, S.; Liao, A.P.; Xia, Y.; Chun Li, Y.; Li, J.-D.; Sartor, R.B.; Sun, J. Vitamin D Receptor Negatively Regulates Bacterial-Stimulated NF-κB Activity in Intestine. Am. J. Pathol. 2010, 177, 686–697. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Yu, Z.; Fu, L.; Wang, H.; Chen, X.; Zhang, C.; Lv, Z.-M.; Xu, D.-X. Vitamin D3 Inhibits Lipopolysaccharide-Induced Placental Inflammation through Reinforcing Interaction between Vitamin D Receptor and Nuclear Factor Kappa B P65 Subunit. Sci. Rep. 2015, 5, 10871. [Google Scholar] [CrossRef]
- Karkeni, E.; Bonnet, L.; Marcotorchino, J.; Tourniaire, F.; Astier, J.; Ye, J.; Landrier, J.-F. Vitamin D Limits Inflammation-Linked microRNA Expression in Adipocytes in Vitro and in Vivo: A New Mechanism for the Regulation of Inflammation by Vitamin D. Epigenetics 2018, 13, 156–162. [Google Scholar] [CrossRef]
- Castillo, J.A.; Urcuqui-Inchima, S. Vitamin D Modulates Inflammatory Response of DENV-2-Infected Macrophages by Inhibiting the Expression of Inflammatory-Liked miRNAs. Pathog. Glob. Health 2023, 117, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Kempinska-Podhorodecka, A.; Milkiewicz, M.; Wasik, U.; Ligocka, J.; Zawadzki, M.; Krawczyk, M.; Milkiewicz, P. Decreased Expression of Vitamin D Receptor Affects an Immune Response in Primary Biliary Cholangitis via the VDR-miRNA155-SOCS1 Pathway. Int. J. Mol. Sci. 2017, 18, 289. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Du, J.; Zhang, Z.; Liu, T.; Shi, Y.; Ge, X.; Li, Y.C. MicroRNA-346 Mediates Tumor Necrosis Factor α-Induced Downregulation of Gut Epithelial Vitamin D Receptor in Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2014, 20, 1910–1918. [Google Scholar] [CrossRef]
- Shang, L.; Li, J.; Zhou, F.; Zhang, M.; Wang, S.; Yang, S. MiR-874-5p Targets VDR/NLRP3 to Reduce Intestinal Pyroptosis and Improve Intestinal Barrier Damage in Sepsis. Int. Immunopharmacol. 2023, 121, 110424. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Zaki, A.; Manda, K.; Mohan, A.; Syed, M.A. Vitamin-D Ameliorates Sepsis-Induced Acute Lung Injury via Augmenting miR-149-5p and Downregulating ER Stress. J. Nutr. Biochem. 2022, 110, 109130. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, X.; Zeng, Y.; Mo, X.; Hong, S.; He, H.; Li, J.; Fatima, S.; Liu, Q. Oxidative Stress Induces Mitochondrial Iron Overload and Ferroptotic Cell Death. Sci. Rep. 2023, 13, 15515. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Li, X.; Tan, X.; Wang, P.; Zhao, X.; Zhang, H.; Song, Y. Vitamin D Suppresses Ferroptosis and Protects against Neonatal Hypoxic-Ischemic Encephalopathy by Activating the Nrf2/HO-1 Pathway. Transl. Pediatr. 2022, 11, 1633–1644. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, W.-J.; Zheng, X.-R.; Liu, Q.-L.; Du, Q.; Lai, Y.-J.; Liu, S.-Q. Eriodictyol Ameliorates Cognitive Dysfunction in APP/PS1 Mice by Inhibiting Ferroptosis via Vitamin D Receptor-Mediated Nrf2 Activation. Mol. Med. Camb. Mass 2022, 28, 11. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, H.; Yi, B.; Yang, S.; Liu, J.; Hu, J.; Wang, J.; Cao, K.; Zhang, W. VDR Activation Attenuate Cisplatin Induced AKI by Inhibiting Ferroptosis. Cell Death Dis. 2020, 11, 73. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Moore, S.M.; Kishi, N.; Macklis, J.D.; MacDonald, J.L. Vitamin D Supplementation Rescues Aberrant NF-κB Pathway Activation and Partially Ameliorates Rett Syndrome Phenotypes in Mecp2 Mutant Mice. eNeuro 2020, 7, ENEURO.0167-20.2020. [Google Scholar] [CrossRef]
- Ismailova, A.; White, J.H. Vitamin D, Infections and Immunity. Rev. Endocr. Metab. Disord. 2022, 23, 265–277. [Google Scholar] [CrossRef]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology Consensus Guidelines on the Management of Inflammatory Bowel Disease in Adults. Gut 2019, 68, s1–s106. [Google Scholar] [CrossRef]
- Hashash, J.G.; Elkins, J.; Lewis, J.D.; Binion, D.G. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients With Inflammatory Bowel Disease: Expert Review. Gastroenterology 2024, 166, 521–532. [Google Scholar] [CrossRef]
- Wang, J.; Thingholm, L.B.; Skiecevičienė, J.; Rausch, P.; Kummen, M.; Hov, J.R.; Degenhardt, F.; Heinsen, F.-A.; Rühlemann, M.C.; Szymczak, S.; et al. Genome-Wide Association Analysis Identifies Variation in Vitamin D Receptor and Other Host Factors Influencing the Gut Microbiota. Nat. Genet. 2016, 48, 1396–1406. [Google Scholar] [CrossRef]
- Luthold, R.V.; Fernandes, G.R.; Franco-de-Moraes, A.C.; Folchetti, L.G.D.; Ferreira, S.R.G. Gut Microbiota Interactions with the Immunomodulatory Role of Vitamin D in Normal Individuals. Metabolism. 2017, 69, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Bellerba, F.; Muzio, V.; Gnagnarella, P.; Facciotti, F.; Chiocca, S.; Bossi, P.; Cortinovis, D.; Chiaradonna, F.; Serrano, D.; Raimondi, S.; et al. The Association between Vitamin D and Gut Microbiota: A Systematic Review of Human Studies. Nutrients 2021, 13, 3378. [Google Scholar] [CrossRef] [PubMed]
- Fabisiak, N.; Tarasiuk-Zawadzka, A.; Fabisiak, A.; Wlodarczyk, M.; Fichna, J. Determining the Expression of Vitamin D Receptor, Regulator of Iron Metabolism Hepcidin and Cathelicidin Antimicrobial Peptide Genes for Development of Future Diagnostic and Therapeutic Options in Patients with Inflammatory Bowel Disease. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2024, 75, 409–413. [Google Scholar] [CrossRef]
- Kanhere, M.; He, J.; Chassaing, B.; Ziegler, T.R.; Alvarez, J.A.; Ivie, E.A.; Hao, L.; Hanfelt, J.; Gewirtz, A.T.; Tangpricha, V. Bolus Weekly Vitamin D3 Supplementation Impacts Gut and Airway Microbiota in Adults With Cystic Fibrosis: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. J. Clin. Endocrinol. Metab. 2018, 103, 564–574. [Google Scholar] [CrossRef]
- Jones, M.L.; Martoni, C.J.; Prakash, S. Oral Supplementation with Probiotic L. Reuteri NCIMB 30242 Increases Mean Circulating 25-Hydroxyvitamin D: A Post Hoc Analysis of a Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2013, 98, 2944–2951. [Google Scholar] [CrossRef]
- Aggeletopoulou, I.; Tsounis, E.P.; Mouzaki, A.; Triantos, C. Exploring the Role of Vitamin D and the Vitamin D Receptor in the Composition of the Gut Microbiota. Front. Biosci. Landmark Ed. 2023, 28, 116. [Google Scholar] [CrossRef]
- Amersfoort, J.; Eelen, G.; Carmeliet, P. Immunomodulation by Endothelial Cells—Partnering up with the Immune System? Nat. Rev. Immunol. 2022, 22, 576–588. [Google Scholar] [CrossRef]
- Sha, T.; Wang, Y.; Zhang, Y.; Lane, N.E.; Li, C.; Wei, J.; Zeng, C.; Lei, G. Genetic Variants, Serum 25-Hydroxyvitamin D Levels, and Sarcopenia: A Mendelian Randomization Analysis. JAMA Netw. Open 2023, 6, e2331558. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, H.; Chen, Y.; He, J.; Zhu, L.; Yang, B.; Zhao, W. High Glucose-Induced Injury in Human Umbilical Vein Endothelial Cells Is Alleviated by Vitamin D Supplementation through Downregulation of TIPE1. Diabetol. Metab. Syndr. 2024, 16, 18. [Google Scholar] [CrossRef]
- Song, Y.-S.; Jamali, N.; Sorenson, C.M.; Sheibani, N. Vitamin D Receptor Expression Limits the Angiogenic and Inflammatory Properties of Retinal Endothelial Cells. Cells 2023, 12, 335. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Vincent, V.; Thakkar, H.; Abraham, R.; Ramakrishnan, L. Beneficial Role of Vitamin D on Endothelial Progenitor Cells (EPCs) in Cardiovascular Diseases. J. Lipid Atheroscler. 2022, 11, 229–249. [Google Scholar] [CrossRef]
- Mohammad, S.; Mishra, A.; Ashraf, M.Z. Emerging Role of Vitamin D and Its Associated Molecules in Pathways Related to Pathogenesis of Thrombosis. Biomolecules 2019, 9, 649. [Google Scholar] [CrossRef]
- Cox, D. Sepsis—It Is All about the Platelets. Front. Immunol. 2023, 14, 1210219. [Google Scholar] [CrossRef] [PubMed]
- Verdoia, M.; Pergolini, P.; Rolla, R.; Sartori, C.; Nardin, M.; Schaffer, A.; Barbieri, L.; Daffara, V.; Marino, P.; Bellomo, G.; et al. Vitamin D Levels and High-Residual Platelet Reactivity in Patients Receiving Dual Antiplatelet Therapy with Clopidogrel or Ticagrelor. Platelets 2016, 27, 576–582. [Google Scholar] [CrossRef]
- Sayar, Z.; Moll, R.; Isenberg, D.; Cohen, H. Thrombotic Antiphospholipid Syndrome: A Practical Guide to Diagnosis and Management. Thromb. Res. 2021, 198, 213–221. [Google Scholar] [CrossRef]
- Çakır, O.M. Low Vitamin D Levels Predict Left Atrial Thrombus in Nonvalvular Atrial Fibrillation. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1152–1160. [Google Scholar] [CrossRef]
- Khansari, N.; Bagheri, M.; Homayounfar, S.; Poorolajal, J.; Mehrpooya, M. Influence of Vitamin D Status on the Maintenance Dose of Warfarin in Patients Receiving Chronic Warfarin Therapy. Cardiol. Ther. 2022, 11, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Moreno, J.M.; Herencia, C.; Montes de Oca, A.; Muñoz-Castañeda, J.R.; Rodríguez-Ortiz, M.E.; Díaz-Tocados, J.M.; Peralbo-Santaella, E.; Camargo, A.; Canalejo, A.; Rodriguez, M.; et al. Vitamin D Modulates Tissue Factor and Protease-Activated Receptor 2 Expression in Vascular Smooth Muscle Cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2016, 30, 1367–1376. [Google Scholar] [CrossRef]
- Wood, J.P.; Ellery, P.E.R.; Maroney, S.A.; Mast, A.E. Biology of Tissue Factor Pathway Inhibitor. Blood 2014, 123, 2934–2943. [Google Scholar] [CrossRef]
- Kempker, J.A.; Tangpricha, V.; Ziegler, T.R.; Martin, G.S. Vitamin D in Sepsis: From Basic Science to Clinical Impact. Crit. Care 2012, 16, 316. [Google Scholar] [CrossRef] [PubMed]
- Lipkie, T.E.; Janasch, A.; Cooper, B.R.; Hohman, E.E.; Weaver, C.M.; Ferruzzi, M.G. Quantification of Vitamin D and 25-Hydroxyvitamin D in Soft Tissues by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2013, 932, 6–11. [Google Scholar] [CrossRef]
- Fu, X.; Dolnikowski, G.G.; Patterson, W.B.; Dawson-Hughes, B.; Zheng, T.; Morris, M.C.; Holland, T.M.; Booth, S.L. Determination of Vitamin D and Its Metabolites in Human Brain Using an Ultra-Pressure LC-Tandem Mass Spectra Method. Curr. Dev. Nutr. 2019, 3, nzz074. [Google Scholar] [CrossRef]
- Máčová, L.; Bičíková, M. Vitamin D: Current Challenges between the Laboratory and Clinical Practice. Nutrients 2021, 13, 1758. [Google Scholar] [CrossRef] [PubMed]
- Alonso, N.; Zelzer, S.; Eibinger, G.; Herrmann, M. Vitamin D Metabolites: Analytical Challenges and Clinical Relevance. Calcif. Tissue Int. 2023, 112, 158–177. [Google Scholar] [CrossRef]
- Health Management Branch of Chinese Nutrition Society. Expert consensus on evaluation and improvement of vitamin D nutritional status. Chin. Health Manag. J. 2023, 17, 245–252. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D: A Millenium Perspective. J. Cell. Biochem. 2003, 88, 296–307. [Google Scholar] [CrossRef]
- Webb, A.R.; Kline, L.; Holick, M.F. Influence of Season and Latitude on the Cutaneous Synthesis of Vitamin D3: Exposure to Winter Sunlight in Boston and Edmonton Will Not Promote Vitamin D3 Synthesis in Human Skin. J. Clin. Endocrinol. Metab. 1988, 67, 373–378. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Huang, Y.-C.; Qiao, Y.-C.; Ling, W.; Pan, Y.-H.; Geng, L.-J.; Xiao, J.-L.; Zhang, X.-X.; Zhao, H.-L. Climates on Incidence of Childhood Type 1 Diabetes Mellitus in 72 Countries. Sci. Rep. 2017, 7, 12810. [Google Scholar] [CrossRef]
- Amrein, K.; Parekh, D.; Westphal, S.; Preiser, J.-C.; Berghold, A.; Riedl, R.; Eller, P.; Schellongowski, P.; Thickett, D.; Meybohm, P.; et al. Effect of High-Dose Vitamin D3 on 28-Day Mortality in Adult Critically Ill Patients with Severe Vitamin D Deficiency: A Study Protocol of a Multicentre, Placebo-Controlled Double-Blind Phase III RCT (the VITDALIZE Study). BMJ Open 2019, 9, e031083. [Google Scholar] [CrossRef]
- O’Hearn, K.; Menon, K.; Albrecht, L.; Amrein, K.; Britz-McKibbin, P.; Cayouette, F.; Choong, K.; Foster, J.R.; Fergusson, D.A.; Floh, A.; et al. Rapid Normalization of Vitamin D Deficiency in PICU (VITdALIZE-KIDS): Study Protocol for a Phase III, Multicenter Randomized Controlled Trial. Trials 2024, 25, 619. [Google Scholar] [CrossRef]
- Maestro, M.A.; Molnár, F.; Carlberg, C. Vitamin D and Its Synthetic Analogs. J. Med. Chem. 2019, 62, 6854–6875. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.; Trompke, C. Tacalcitol Ointment for Long-Term Control of Chronic Plaque Psoriasis in Dermatological Practice. Dermatology 2002, 204, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yao, Z.; Wang, Y.; Chai, L.; Zhou, X. Vitamin D Analogs Combined with Different Types of Phototherapy in the Treatment of Vitiligo: A Systematic Review of Randomized Trials and within-Patient Studies. Int. Immunopharmacol. 2022, 109, 108789. [Google Scholar] [CrossRef]
- Aggarwal, P.; Aggarwal, K.; Jain, V.K. Tacalcitol: A Useful Adjunct to Narrow Band Ultraviolet B Phototherapy in Psoriasis. J. Dermatol. Treat. 2016, 27, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Turlej, E.; Goszczyński, T.M.; Drab, M.; Orzechowska, B.; Maciejewska, M.; Banach, J.; Wietrzyk, J. The Impact of Exosomes/Microvesicles Derived from Myeloid Dendritic Cells Cultured in the Presence of Calcitriol and Tacalcitol on Acute B-Cell Precursor Cell Lines with MLL Fusion Gene. J. Clin. Med. 2022, 11, 2224. [Google Scholar] [CrossRef]
- Mizobuchi, M.; Ogata, H. Clinical Uses of 22-Oxacalcitriol. Curr. Vasc. Pharmacol. 2014, 12, 324–328. [Google Scholar] [CrossRef]
- Li, C.; Yin, S.; Yin, H.; Cao, L.; Zhang, T.; Wang, Y. Efficacy and Safety of 22-Oxa-Calcitriol in Patients with Rheumatoid Arthritis: A Phase II Trial. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 9127–9135. [Google Scholar] [CrossRef]
- Hamzawy, M.; Gouda, S.A.A.; Rashid, L.; Attia Morcos, M.; Shoukry, H.; Sharawy, N. The Cellular Selection between Apoptosis and Autophagy: Roles of Vitamin D, Glucose and Immune Response in Diabetic Nephropathy. Endocrine 2017, 58, 66–80. [Google Scholar] [CrossRef]
- Hamzawy, M.; Gouda, S.A.A.; Rashed, L.; Morcos, M.A.; Shoukry, H.; Sharawy, N. 22-Oxacalcitriol Prevents Acute Kidney Injury via Inhibition of Apoptosis and Enhancement of Autophagy. Clin. Exp. Nephrol. 2019, 23, 43–55. [Google Scholar] [CrossRef]
- Hau, C.S.; Shimizu, T.; Tada, Y.; Kamata, M.; Takeoka, S.; Shibata, S.; Mitsui, A.; Asano, Y.; Sugaya, M.; Kadono, T.; et al. The Vitamin D3 Analog, Maxacalcitol, Reduces Psoriasiform Skin Inflammation by Inducing Regulatory T Cells and Downregulating IL-23 and IL-17 Production. J. Dermatol. Sci. 2018, 92, 117–126. [Google Scholar] [CrossRef] [PubMed]
Year | Country | Period | Study Population | Study Design | Main Findings | Reference |
---|---|---|---|---|---|---|
2024 | China | As of 2023 | UK Biobank and FinnGen consortium | Mendelian randomization | No significant connections were observed for VD. | [42] |
2023 | - | As of 2023 | 5 studies | Systematic review and meta-analysis | Patients with sepsis have lower 25(OH)D levels, and the VDR Fok I polymorphism is closely associated with the susceptibility to sepsis. | [29] |
2023 | China | 2023 | UK Biobank data in 2021 | Mendelian randomization | No evidence of a causal association between vitamins and sepsis risk from a genetic perspective. | [43] |
2023 | Republic of Korea | 2019–2020 | 129 sepsis patients | Prospective cohort study | Severe VDD can independently affect poor prognosis related to sepsis. | [30] |
2023 | India | 2013–2014 | 96 sepsis patients, age > 18 years | Retrospective cohort study | Measurement of VD at the time of admission may be a possible indicator for prediction of sepsis mortality and hospital and ICU length of stay for ICU-admitted patients with sepsis. | [31] |
2023 | India | 2022 | 80 sepsis patients, aged 18–60 years (40 case group and 40 control group) | Case–control study | A decrease in VD levels correlates with the incidence of mortality in sepsis patients. | [32] |
2022 | Egypt | 2019–2020 | 50 children with sepsis, aged from 1 month to 13 years old with community-acquired infections within the first 48 h of admission to the ICU | Case–control study | In children admitted to pediatric ICU, neither VD levels nor VDR polymorphisms were associated with sepsis. | [54] |
2021 | - | 2014–2019 | 18 cohort and case–control studies | Systematic review and meta-analysis | Low levels of VD both in the cord blood and maternal blood were significantly associated with neonatal sepsis. | [47] |
2021 | - | As of 2020 | 27 studies with 17 case–control studies and 10 cohort studies | Systematic review and meta-analysis | Critically ill infants and children with sepsis could have a lower 25(OH)D level and severe VDD compared to those without sepsis. | [28] |
2021 | India | 2018–2019 | 62 infants in each group of cases and control | Case–control study | VD insufficiency is significantly associated with EONS. VDD significantly increases risk of EONS. | [48] |
2021 | The Republic of Türkiye | 2019–2020 | 148 patients diagnosed with sepsis | Prospective observational study | VDR levels were associated with high 28-day mortality and negatively correlated with lactate, CRP, APACHE II, and SOFA scores and disease severity in patients with sepsis. | [33] |
2020 | - | As of 2020 | 16 studies with 2382 children | Systematic review and meta-analysis | VDD in children might have an independent relationship with higher sepsis, pediatric risk of mortality III score, length of hospital stay, and duration of mechanical ventilation. | [49] |
2020 | - | As of 2019 | 8 studies with 1736 patients | Systematic review and meta-analysis | Severe VDD may be independently associated with increased mortality in adult patients with sepsis. | [34] |
2020 | - | As of 2019 | 23 studies with 4451 children, 2500 children with VDD | Systematic review and meta-analysis | VDD in children may have an independent relationship with up to 2.24-fold risk of sepsis and acute and critical care unit mortality. | [50] |
2019 | - | As of 2018 | 52 studies, 7434 children with acute or critical conditions | Systematic review and meta-analysis | Meta-analysis of mortality (18 cohort studies, 2463 total individuals) showed increased risk of death in 25(OH)D-deficient children (OR 1.81, 95% CI 1.24 to 2.64, p = 0.002, I2 = 25.7%, p = 0.153). | [53] |
2019 | - | As of 2019 | 18 articles involving 2987 critically ill children | Systematic review and meta-analysis | A significant association was only observed in very highly developed countries between VDD and risk of sepsis [OR (95% CIs): 2.65 (1.30, 5.41)] and ventilation support requirement [OR (95% CIs): 1.35 (1.03, 1.77)]. | [52] |
2019 | - | 2011–2017 | 13 studies, comprising 975 patients and 770 control participants | Systematic review and meta-analysis | The association between VDD and sepsis was significant, with an odds ratio (OR) = 1.13 (95% CI, 1.18 to 1.50, p < 0.05) in children. | [56] |
2019 | The Republic of Türkiye | 2017–2018 | 51 term infants in sepsis group and 56 term infants in control group | Prospective cohort study | The number of the newborns with VDD was significantly higher in the sepsis group (n = 31, 60.8%) than in the control group (n = 30, 53.6%; p = 0.00), corresponding to significantly lower levels of VD in the sepsis group (11 ± 5.5 ng/mL vs. 13.8 ± 10.6 ng/mL; p = 0.012). Similarly, maternal VD level was significantly lower in the sepsis group than in the control group (10.8 ± 5.6 ng/mL vs. 14.9 ± 10 ng/mL; p = 0.001). | [44] |
2019 | The Slovak Republic | 2019 | 32 patients, admitted to an intensive care unit with both SIRS and sepsis | Retrospective cohort study | VDD predisposed to the development of sepsis, negatively correlated with CRP, presepsin, sTREM-1, and SOFA scores and their levels associated with both 7- and 28-day survival of patients. | [35] |
2018 | Republic of Korea | 2013–2017 | 188 very-low-birth-weight infants | Retrospective cohort study | The results showed that 79.8% of preterm infants in this study had VD deficiency at birth. Low VD status was associated with respiratory morbidity. | [57] |
2017 | The Republic of Türkiye | 2013 | 117 premature infants with gestational age of <37 weeks were enrolled | Prospective observational study | There was no significant relationship between the cord blood VD levels and the risk of neonatal sepsis in premature infants. | [55] |
2016 | Rome | 2013–2014 | 107 patients with sepsis/septic | Retrospective cohort study | In critical septic patients, extremely low VD levels on admission may be a major determinant of clinical outcomes. | [36] |
2015 | - | 2000–2014 | 10 observational studies, involving 33,810 participants | Systematic review and meta-analysis | VDD was associated with an increased susceptibility of sepsis. | [37] |
2015 | The Republic of Türkiye | 2011–2012 | 40 newborns with EONS, 43 controls | Case–control study | Cord-blood 25(OH)D levels of neonates with EONS were significantly lower than those of the healthy controls, and a low level of cord-blood VD was found to be associated with an increased risk of EONS. | [45] |
2015 | Ireland | 2012–2013 | 120 children with suspected sepsis admitted to the PICU and 30 pediatric controls | Prospective cohort study | Children admitted to the PICU with suspected sepsis had lower 25(OH)D than controls, and inadequate 25(OH)D status was associated with confirmed sepsis and poor outcomes. | [51] |
2015 | The Republic of Türkiye | 2012 | 50 term infants with clinical and laboratory findings of early-onset sepsis EOS (study group) and 50 healthy infants with no signs of clinical/laboratory infection (control group) | Prospective observational study | Maternal and neonatal 25(OH)D levels (22.2/8.6 ng/mL, respectively) in the study group were significantly lower than those of the control group (36.2/19 ng/mL, respectively, p < 0.001). A positive correlation was detected between maternal and neonatal 25(OH)D levels. Severe VDD was significantly more common in the sepsis group. | [46] |
2014 | Austria | 2008–2010 | 655 surgical and nonsurgical critically ill patients with available 25(OH) D levels hospitalized | Prospective observational study | Low 25(OH)D status is significantly associated with mortality in the critically ill. | [38] |
2014 | United States of America | 2006–2011 | 121 patients, 25-hydroxyvitamin D levels measured within 30 days, admission for severe sepsis or septic shock | Retrospective cohort study | Patients deficient in VD within 30 days of hospital admission for severe sepsis or septic shock may be at increased risk for all-cause 30-day mortality. | [39] |
2012 | The State of Israel | 2008–2009 | 107 patients admitted to ICUs and internal medicine wards | Prospective observational study | Low vitamin D levels are common among patients admitted to ICU. Longer survival times were observed among vitamin D-sufficient patients. Vitamin D concentration may be either a biomarker of survival or a co-factor. | [58] |
2012 | Canada | 2002–2003 | 196 patients, age ≥ 18 years, expected to stay more than 24 h in the ICU and were enrolled within the first 24 h of ICU admission | Prospective cohort study | This study demonstrates significant decreases in VD status over the duration of the patient’s ICU stay. Low levels of VD are associated with longer time to ICU discharge alive and a trend toward increased risk of ICU-acquired infection. | [40] |
2011 | United States of America | 1998–2009 | 2399 patients, age ≥ 18 years, pre-admission 25(OH)D was categorized as deficiency in 25(OH)D (≤15 ng/mL), insufficiency (16–29 ng/mL), and sufficiency (≥30 ng/mL) | Retrospective cohort study | Deficiency of 25(OH)D prior to hospital admission is a significant predictor of short- and long-term all-cause patient mortality and blood culture positivity in a critically ill patient population. | [25] |
2011 | United States of America | 2011 | 81 patients, age ≥ 18 years, with suspected infection | Prospective observational study | VD insufficiency was associated with higher sepsis severity in emergency department patients hospitalized for suspected infection. | [41] |
Year | Country | Period | Study Population | Study Design | Main Findings | Reference |
---|---|---|---|---|---|---|
2024 | The Islamic Republic of Iran | 2017–2018 | 28 SIRS-positive patients, 14 patients received intravenous calcitriol daily for 3 days (intervention group), 14 patients (control group) | RCT | The administration of intravenous calcitriol could reduce the levels of procalcitonin but did not have a significant effect on presepsin. The ICU length of stay and 28-day mortality did not differ significantly either between the two arms of the study. | [61] |
2023 | China | 2008–2019 | 3539 patients with sepsis (>18 years), VD supplementation group (n = 3224), non-VD supplementation group (n = 315) | Retrospective cohort study | VD supplementation during an ICU stay was associated with improved prognosis in patients with sepsis, as evidenced by lower in-hospital, 28-day, and 90-day mortality rates and lower disease severity-related scores, but showed no influence on the length of stay in the hospital or ICU. | [65] |
2023 | United States of America | 2008–2019 | 19,816 adult patients with suspected infection in ICU, VD group (n = 714), non-VD group (n = 19,102) | Retrospective cohort study | VD supplementation demonstrated a lower risk of sepsis (odds ratio 0.46; 95% CI 0.35–0.60; p < 0.001) and a lower risk of new mechanical ventilation requirement (odds ratio 0.70; 95% CI 0.53–0.92; p = 0.01), but no significant difference in the risk of 28-day mortality was observed (hazard ratio 1.02; 95% CI 0.77–1.35; p = 0.89). | [64] |
2022 | Egypt | 2020–2021 | 116 patients (group 1, n = 58: orally administered alfacalcidol 1 μg/day; group 2, n = 58: intramuscularly administered cholecalciferol 200,000 IU) | RCT | High-dose VD was considered a promising treatment in the suppression of cytokine storms among COVID-19 patients and was associated with better clinical improvement and fewer adverse outcomes compared to low-dose VD. | [62] |
2021 | India | 2018–2019 | 62 infants in each group of cases and control | Case–control study | Risk of EONS increased 8 times in neonates with 25(OH)D level < 30 ng/mL (odds ratio = 8.2; 95% confidence interval [CI]: 3.08–21.82; p = 0.000). The 25OH-D level was significantly lower in EONS group than control group. Optimal cut-off for 25(OH)D was 25 ng/mL to predict EONS with a sensitivity and specificity of 88.7% and 79%, respectively (area under the curve: 0.84; 95% CI: 0.76–0.92; p = 0.000). | [48] |
2020 | China | 2020 | Children aged ≤ 14 years with VDD and sepsis to receive one dose of 150,000 IU of cholecalciferol (treatment group, n = 60) or placebo (control group, n = 60) | RCT | Ang-II, IL-6, and TNF-a concentrations were all reduced after vitamin D supplementation. Furthermore, the cv-SOFA score (1.76 ± 0.8 vs. 2.3 ± 1.1) and incidence of septic shock (7% vs. 20%) were lower in the treatment group than in the control group. The duration of ventilation and mortality rates did not differ between two groups. | [71] |
2020 | Egypt | 2017–2019 | 60 neonates with sepsis, group I: 30 neonates with sepsis who received antibiotic only, group II: 30 neonates with sepsis who received antibiotic therapy and VD | RCT | Serum 25(OH)D levels of neonates with the early-onset neonatal sepsis were significantly lower than the healthy controls. VD supplementation improved sepsis score and decrease high levels of hs-CRP. | [72] |
2019 | United States of America | 2014–2016 | Preterm infants with gestational age (GA) ≥ 28 weeks with late-onset sepsis LOS, subjects were randomly assigned to receive 400 or 800 IU/day of vitamin D3. 25 infants in each group | RCT | Serum pro-inflammatory cytokines IL-6 and TNF-α concentrations decreased at 1 week and at discharge in both groups without differences between groups. A dose of 400 IU of VD was adequate to treat VDD in the majority of premature infants with LOS. The 2 dosing regimens did not differ in clinical or biochemical changes. | [73] |
2019 | - | As of 2018 | 52 trials with a total of 75,454 participants | Systematic review and meta-analysis | VD supplementation alone was not associated with all-cause mortality in adults compared with placebo or no treatment. VD supplementation reduced the risk of cancer death by 15%. | [67] |
2019 | The Islamic Republic of Iran | 2019 | Mechanically ventilated adult patients, placebo group (n = 18), VD group (n = 22) | RCT | High-dose VD could reduce mortality in mechanically ventilated patients. Despite decrease of 10 days in duration of mechanical ventilation, the difference was not statistically significant. | [63] |
2019 | United States of America | 2017–2018 | 1360 patients, placebo group (n = 540), VD group (n = 530) | RCT | Early administration of high-dose enteral vitamin D3 did not provide an advantage over placebo with respect to 90-day mortality or other, nonfatal outcomes among critically ill, VDD patients. | [68] |
2016 | United States of America | 2011–2014 | ICU adult patients, placebo group (n = 10), 250,000 IU VD3 group (n = 10), 500,000 IU VD3 group (n = 11) | RCT | High-dose VD3 safely increased plasma 25(OH)D concentrations into the sufficient range and was associated with decreased hospital length of stay without altering other clinical outcomes. | [59] |
2014 | United States of America | 2013 | 67 critically ill patients with severe sepsis or septic shock, 36 received calcitriol (2 μg intravenously), 31 received placebo | RCT | Calcitriol-treated patients had higher cathelicidin (p = 0.04) and IL-10 (p = 0.03) mRNA expression than placebo-treated patients 24 h after study drug administration. Plasma cytokine levels (IL-10, IL-6, TNF-α, IL-1β, and IL-2) and urinary kidney injury markers were similar in calcitriol-versus placebo-treated patients (p > 0.05 for all comparisons). Calcitriol had no effect on clinical outcomes nor were any adverse effects observed. | [69] |
2014 | Austria | 2010–2012 | 492 critically ill adult white patients with VDD (20ng/mL), VD group (n = 249), placebo group (n = 243) | RCT | Among critically ill patients with VDD, administration of high-dose VD compared with placebo did not reduce hospital length of stay, hospital mortality, or 6-month mortality. Lower hospital mortality was observed in the severe VDD subgroup. | [70] |
2011 | Austria | 2009–2010 | 25 adult patients with VDD and an expected stay in the ICU > 48 h, VD group (n = 12), placebo group (n = 13) | RCT | A single oral ultra-high dose of cholecalciferol corrects VDD within 2 days in most patients without causing adverse effects like hypercalcemia or hypercalciuria. | [60] |
Deficiency * | Insufficiency * | Sufficiency * | Toxicity * | |
---|---|---|---|---|
Global | <50~25 | 30–75 | 50–250 | >250 |
Europe | <50 | 50–75 | 50–225 | >500 |
USA | <50 | 50–75 | >75 | >150 |
China | <30 | 30–50 | ≥50 | |
Brazil | <50 | 50–74 | 75–250 | |
Japan | <50 | 50–75 | >75 | |
Australia | <29 | 30–49 | ≥50 | |
Gulf Region | <50 | 50–75 | >75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, S.; Chen, D.; Wei, Y.; Zou, S.; Chang, Q.; Zhou, H.; Yu, A. The Role of Vitamin D and Vitamin D Receptor in Sepsis. Curr. Issues Mol. Biol. 2025, 47, 500. https://doi.org/10.3390/cimb47070500
Shang S, Chen D, Wei Y, Zou S, Chang Q, Zhou H, Yu A. The Role of Vitamin D and Vitamin D Receptor in Sepsis. Current Issues in Molecular Biology. 2025; 47(7):500. https://doi.org/10.3390/cimb47070500
Chicago/Turabian StyleShang, Shenglan, Dongxin Chen, Yuqi Wei, Shuo Zou, Qiuyue Chang, Hong Zhou, and Airong Yu. 2025. "The Role of Vitamin D and Vitamin D Receptor in Sepsis" Current Issues in Molecular Biology 47, no. 7: 500. https://doi.org/10.3390/cimb47070500
APA StyleShang, S., Chen, D., Wei, Y., Zou, S., Chang, Q., Zhou, H., & Yu, A. (2025). The Role of Vitamin D and Vitamin D Receptor in Sepsis. Current Issues in Molecular Biology, 47(7), 500. https://doi.org/10.3390/cimb47070500