Advanced Sensing Technology for Biomarker Detection and Medical Diagnosis

A special issue of Chemosensors (ISSN 2227-9040). This special issue belongs to the section "(Bio)chemical Sensing".

Deadline for manuscript submissions: closed (28 February 2025) | Viewed by 4430

Special Issue Editor


E-Mail Website
Guest Editor
College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
Interests: sensors; chemosensors; biosensors; nanomaterials; biochemical and pharmaceutical analysis

Special Issue Information

Dear Colleagues,

Multiple-biomarker detection is crucial for an early clinical diagnosis, and it is significant in achieving the simultaneous detection of multiple biomarkers with the same nanomaterial. In early clinical diagnoses, the detection of a single biomarker may lead to inaccurate diagnosis results. Therefore, multiple-biomarker detection is often highly desirable and can provide real-time as well as accurate biological information for an early diagnosis. Several biomarker sensors based on nanomaterials have also shown their prospects in applications in recent years.

This Special Issue on “Advanced Sensing Technology for Biomarker Detection and Medical Diagnosis” welcomes contributions of original research or comprehensive review submissions reporting on the latest research progress and developments in bio/chemical sensors for biological detection and disease diagnosis.

Prof. Dr. Jian Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Chemosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomarker detection
  • medical diagnosis
  • nanomaterials
  • biosensors
  • chemical sensors
  • optical sensors
  • analytical chemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

32 pages, 9468 KiB  
Article
Assessing Data Fusion in Sensory Devices for Enhanced Prostate Cancer Detection Accuracy
by Jeniffer Katerine Carrillo Gómez, Carlos Alberto Cuastumal Vásquez, Cristhian Manuel Durán Acevedo and Jesús Brezmes Llecha
Chemosensors 2024, 12(11), 228; https://doi.org/10.3390/chemosensors12110228 - 1 Nov 2024
Viewed by 1259
Abstract
The combination of an electronic nose and an electronic tongue represents a significant advance in the pursuit of effective detection methods for prostate cancer, a widespread form of cancer affecting men across the globe. These cutting-edge devices, collectively called “E-Senses”, use data fusion [...] Read more.
The combination of an electronic nose and an electronic tongue represents a significant advance in the pursuit of effective detection methods for prostate cancer, a widespread form of cancer affecting men across the globe. These cutting-edge devices, collectively called “E-Senses”, use data fusion to identify distinct chemical compounds in exhaled breath and urine samples, potentially improving existing diagnostic techniques. This study combined the information from two sensory perception devices to detect prostate cancer in biological samples (breath and urine). To achieve this, data from patients diagnosed with the disease and from control individuals were collected using a gas sensor array and chemical electrodes. The signals were subjected to data preprocessing algorithms to prepare them for analysis. Following this, the datasets for each device were individually analyzed and subsequently merged to enhance the classification results. The data fusion was assessed and it successfully improved the accuracy of detecting prostate-related conditions and distinguishing healthy patients, achieving the highest success rate possible (100%) in classification through machine learning methods, outperforming the results obtained from individual electronic devices. Full article
Show Figures

Figure 1

11 pages, 2977 KiB  
Article
A Fluorescence Strategy Based on Guanidinylated Carbon Dots and FAM-Labeled ssDNA for Facile Detection of Lipopolysaccharide
by Zongfu Zheng, Junrong Li, Gengping Pan, Jing Wang, Yao Wang, Kai Peng, Xintian Zhang, Zhengjun Huang and Shaohuang Weng
Chemosensors 2024, 12(10), 201; https://doi.org/10.3390/chemosensors12100201 - 1 Oct 2024
Viewed by 978
Abstract
The detection of lipopolysaccharide (LPS) has important value for the monitoring of diseases such as sepsis and the impurity control of drugs. In this work, we prepared guanidinylated carbon dots (GQ-CDs) and used them to adsorb 5-carboxyfluorescein (FAM)-labeled single-stranded DNA (ssDNA) to become [...] Read more.
The detection of lipopolysaccharide (LPS) has important value for the monitoring of diseases such as sepsis and the impurity control of drugs. In this work, we prepared guanidinylated carbon dots (GQ-CDs) and used them to adsorb 5-carboxyfluorescein (FAM)-labeled single-stranded DNA (ssDNA) to become GQ-CDs/FAM-DNA, resulting in quenched FAM. The quenching efficiency of the FAM-DNA by GQ-CDs in the GQ-CDs/FAM-DNA system was 91.95%, and this quenching was stable over the long term. Upon the addition of LPS, the quenched FAM-DNA in the GQ-CDs/FAM-DNA system regained fluorescence at 520 nm. The mechanism studies found that the addition of LPS promoted the dissociation of FAM-DNA adsorbed on GQ-CDs, thereby restoring fluorescence. The degree of fluorescence recovery was closely related to the content of LPS. Under optimized conditions, the fluorescence recovery was linearly related to LPS concentrations ranging from 5 to 90 μg/mL, with a detection limit of 0.75 μg/mL. The application of this method to plasma samples and trastuzumab injections demonstrated good spiked recoveries and reproducibility. This platform, based on GQ-CDs for the adsorption and quenching of FAM-DNA, enables the detection of LPS through relatively simple mixing operations, showing excellent competitiveness for the determination of actual samples under various conditions. Full article
Show Figures

Figure 1

10 pages, 4256 KiB  
Article
Portable and Visual Detection of Cytochrome c with Graphene Quantum Dots–Filter Paper Composite
by Liangtong Li, Yongjian Jiang, Ni Wang, Yusheng Feng, Binbin Chen and Jian Wang
Chemosensors 2024, 12(8), 167; https://doi.org/10.3390/chemosensors12080167 - 19 Aug 2024
Viewed by 1318
Abstract
As a significant biomarker during the apoptosis process, cytochrome c (Cyt c) is considered as a critical component in the inherent apoptotic pathway, but the simple and portable detection still remains challengeable. In this work, a portable and visual sensing platform for Cyt [...] Read more.
As a significant biomarker during the apoptosis process, cytochrome c (Cyt c) is considered as a critical component in the inherent apoptotic pathway, but the simple and portable detection still remains challengeable. In this work, a portable and visual sensing platform for Cyt c was developed based upon the fluorescence quenching of graphene quantum dots (GQDs), which could be finished within a few seconds. Herein, the absorption spectrum of Cyt c matched the emission spectrum of GQDs well, which could cause the fluorescence quenching of GQDs via the inner filter effect (IFE) in the range of 1–50 μg/mL with the limit of detection as low as 0.1 μg/mL. Furthermore, the intracellular Cyt c was imaged to observe the apoptosis process of cancer cells induced by staurosporine. To achieve the portable and visual detection of Cyt c, GQDs were deposited on the filter paper to form the solid platform, which displayed a gradual fluorescence quenching when different concentrations of Cyt c were present. Compared to the conventional methods, the proposed assay is low-cost, fast, portable, and visual, which will be useful for the investigation of mitochondrial dysfunction and apoptotic cell death. Full article
Show Figures

Graphical abstract

Back to TopTop