Advances in Muscle Research in Health and Disease—2nd Edition

A special issue of Cells (ISSN 2073-4409). This special issue belongs to the section "Tissues and Organs".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 2584

Special Issue Editor


E-Mail Website
Guest Editor
1. Department of Biochemistry, Dongguk University School of Medicine, Gyeongju 38066, Republic of Korea
2. Channelopathy Research Center (CRC), Dongguk University School of Medicine, Ilsan 10326, Republic of Korea
Interests: mechanotransduction; cytoskeleton remodeling; proliferation; differentiation; myogenesis; sarcopenia; insulin resistance; diabetes; metabolism; glucose metabolism; lipid metabolism; metabolic diseases; energy metabolism
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Muscles, consisting of skeletal, cardiac, and smooth muscle, comprise a significant portion of total body mass and are primarily essential for vital human functions. Muscle is also the largest depot for glucose disposal, amino acid storage, and whole-body metabolism coordination via the consumption, distribution, and transportation of nutrients and other substrates. Muscle homeostasis is regulated by both endogenous and exogenous factors, which interact to influence both its structure and function. The advances in dietary, pharmacological, and therapeutic strategies to maintain muscle health, while stressing the prevention and understanding of muscular-system-related disorders, have highlighted the significance of muscle in recent decades. Furthermore, the recent rediscovery of muscles as endocrine organs has changed innovative notions in biomedicine by broadening the concept of systemic integration.

This Special Issue will explore new insights, aiming to present the most recent findings and advances in this field and outlining prospects in all aspects of muscle research. We encourage original research articles as well as review articles on the structure, types, development, regeneration, functions, and roles of muscles, in addition to discussions of muscle-derived disorders that may affect human health.

Prof. Dr. Wan Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • skeletal muscle
  • cardiac muscle
  • smooth muscle
  • myocyte
  • vascular smooth muscle cell
  • stem cell
  • development
  • homeostasis
  • regeneration
  • biomarker
  • therapeutic target

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2707 KiB  
Article
Calponin 3 Regulates Myoblast Proliferation and Differentiation Through Actin Cytoskeleton Remodeling and YAP1-Mediated Signaling in Myoblasts
by Mai Thi Nguyen, Quoc Kiet Ly, Thanh Huu Phan Ngo and Wan Lee
Cells 2025, 14(2), 142; https://doi.org/10.3390/cells14020142 - 18 Jan 2025
Viewed by 1056
Abstract
An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains [...] Read more.
An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts. CNN3 knockdown led to a marked increase in filamentous actin, which promoted the nuclear localization of Yes-associated protein 1 (YAP1), a mechanosensitive transcriptional coactivator required for response to the mechanical cues that drive cell proliferation. Subsequently, CNN3 depletion enhanced myoblast proliferation by upregulating the expression of the YAP1 target genes related to cell cycle progression, such as cyclin B1, cyclin D1, and PCNA. According to a flow cytometry analysis, CNN3-deficient cells displayed higher S and G2/M phase fractions, which concurred with elevated proliferation rates. Furthermore, CNN3 knockdown impaired myogenic differentiation, as evidenced by reduced levels of MyoD, MyoG, and MyHC, key markers of myogenic commitment and maturation, and immunocytochemistry showed that myotube formation was diminished in CNN3-suppressed cells, which was supported by lower differentiation and fusion indices. These findings reveal that CNN3 is essential for myogenic differentiation, playing a key role in regulating actin remodeling and cellular localization of YAP1 to orchestrate the proliferation and differentiation in myogenic progenitor cells. This study highlights CNN3 as a critical regulator of skeletal myogenesis and suggests its therapeutic potential as a target for muscle atrophy and related disorders. Full article
(This article belongs to the Special Issue Advances in Muscle Research in Health and Disease—2nd Edition)
Show Figures

Figure 1

20 pages, 2307 KiB  
Article
Immature Skeletal Myotubes Are an Effective Source for Improving the Terminal Differentiation of Skeletal Muscle
by Seung Yeon Jeong, Jun Hee Choi, Paul D. Allen and Eun Hui Lee
Cells 2024, 13(24), 2136; https://doi.org/10.3390/cells13242136 - 23 Dec 2024
Viewed by 961
Abstract
Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited [...] Read more.
Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited number of available satellite cells that can be harvested and the efficiency of fusion of cultured myoblasts with mature muscle fibers (i.e., terminal differentiation) upon transplantation. However, the possible use of immature myotubes in the middle of the terminal differentiation process instead of satellite cells or cultured myoblasts has not been thoroughly investigated. Herein, myoblasts (Mb) or immature myotubes on differentiation day 2 (D2 immature myotubes) or 3 (D3 immature myotubes) were transferred to plates containing D2 or D3 immature myotubes as host cells. The transferred Mb/immature myotubes on the plates were further co-differentiated with host immature myotubes into mature myotubes in six conditions: Mb-to-D2, D2-to-D2, D3-to-D2, Mb-to-D3, D2-to-D3, and D3-to-D3. Among these six co-differentiation conditions, the D2-to-D3 co-differentiation condition exhibited the most characteristic myotube appearance and the greatest availability of Ca2+ for skeletal muscle contraction. Compared with non-co-differentiated control myotubes, D2-to-D3 co-differentiated myotubes presented increased MyoD and myosin heavy chain II (MyHC II) expression and increased myotube width, accompanied by parallel and swirling alignment. These increases correlated with functional increases in both electrically induced intracellular Ca2+ release and extracellular Ca2+ entry due to the increased expression of ryanodine receptor 1 (RyR1), sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a), and stromal interaction molecule 1 (STIM1). These increases were not detected in any of the other co-differentiation conditions. These results suggest that in vitro-cultured D2-to-D3 co-differentiated mature myotubes could be a good alternative source of satellite cells or cultured myoblasts for skeletal muscle regeneration. Full article
(This article belongs to the Special Issue Advances in Muscle Research in Health and Disease—2nd Edition)
Show Figures

Figure 1

Back to TopTop