10th Anniversary of Cells—Advances in Cells of the Nervous System

A special issue of Cells (ISSN 2073-4409). This special issue belongs to the section "Cells of the Nervous System".

Deadline for manuscript submissions: closed (10 February 2022) | Viewed by 30077

Special Issue Editor

Department of Basic & Translational Sciences, University of Pennsylvania, Philadelphia, PA, USA
Interests: neurodegeneration; lysosomes; purinergic signaling; aging cell; neuroinflammation; microglia; retina
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The year 2021 marks the 10th anniversary of the publication of Cells. We are delighted and proud to celebrate with a series of Special Issues and events. To date, the journal has published more than 4000 papers, and the journal website attracts more than 50,000 monthly page views. We would like to express our sincerest thanks to our readers, innumerable authors, anonymous peer reviewers, editors, and all the people working in some way for the journal who have made substantial contributions for years. Without your support, we would never have made it.

To mark this important milestone, a Special Issue entitled “10th Anniversary of Cells—Advances in Cells of the Nervous System” is being launched. This Special Issue will collect research articles and high-quality review papers in the research field of Cells of the Nervous System. We kindly encourage all research groups working in this area to make contributions to this Special Issue.

This scientific journal is the collaborative achievement of many scientists from all over the world, and we would like to thank all our authors and reviewers who have contributed to this Special Issue. In recognition of our authors’ continued support, Cells is pleased to announce that the Cells Best Paper Awards for Anniversary Special Issues will be launched and granted to the best papers published in the Anniversary Special Issues. See the details at the following link:

https://www.mdpi.com/journal/cells/awards

text

Prof. Claire H. Mitchell
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 7782 KiB  
Article
Effect of 3D Synthetic Microscaffold Nichoid on the Morphology of Cultured Hippocampal Neurons and Astrocytes
Cells 2022, 11(13), 2008; https://doi.org/10.3390/cells11132008 - 23 Jun 2022
Viewed by 2179
Abstract
The human brain is the most complex organ in biology. This complexity is due to the number and the intricate connections of brain cells and has so far limited the development of in vitro models for basic and applied brain research. We decided [...] Read more.
The human brain is the most complex organ in biology. This complexity is due to the number and the intricate connections of brain cells and has so far limited the development of in vitro models for basic and applied brain research. We decided to create a new, reliable, and cost-effective in vitro system based on the Nichoid, a 3D microscaffold microfabricated by two-photon laser polymerization technology. We investigated whether these 3D microscaffold devices can create an environment allowing the manipulation, monitoring, and functional assessment of a mixed population of brain cells in vitro. With this aim, we set up a new model of hippocampal neurons and astrocytes co-cultured in the Nichoid microscaffold to generate brain micro-tissues of 30 μm thickness. After 21 days in culture, we morphologically characterized the 3D spatial organization of the hippocampal astrocytes and neurons within the microscaffold, and we compared our observations to those made using the classical 2D co-culture system. We found that the co-cultured cells colonized the entire volume of the 3D devices. Using confocal microscopy, we observed that within this period the different cell types had become well-differentiated. This was further elaborated with the use of drebrin, PSD-95, and synaptophysin antibodies that labeled the majority of neurons, both in the 2D as well as in the 3D co-cultures. Using scanning electron microscopy, we found that neurons in the 3D co-culture displayed a significantly larger amount of dendritic protrusions compared to neurons in the 2D co-culture. This latter observation indicates that neurons growing in a 3D environment may be more prone to form connections than those co-cultured in a 2D condition. Our results show that the Nichoid can be used as a 3D device to investigate the structure and morphology of neurons and astrocytes in vitro. In the future, this model can be used as a tool to study brain cell interactions in the discovery of important mechanisms governing neuronal plasticity and to determine the factors that form the basis of different human brain diseases. This system may potentially be further used for drug screening in the context of various brain diseases. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Cells of the Nervous System)
Show Figures

Figure 1

10 pages, 2692 KiB  
Article
Tany-Seq: Integrated Analysis of the Mouse Tanycyte Transcriptome
Cells 2022, 11(9), 1565; https://doi.org/10.3390/cells11091565 - 06 May 2022
Cited by 5 | Viewed by 2583
Abstract
The ability to maintain energy homeostasis is necessary for survival. Recently, an emerging role for ependymogial cells, which line the third ventricle in the hypothalamus in the regulation of energy homeostasis, has been appreciated. These cells are called tanycytes and are physically at [...] Read more.
The ability to maintain energy homeostasis is necessary for survival. Recently, an emerging role for ependymogial cells, which line the third ventricle in the hypothalamus in the regulation of energy homeostasis, has been appreciated. These cells are called tanycytes and are physically at the interface of brain communication with peripheral organs and have been proposed to mediate the transport of circulating hormones from the third ventricle into the parenchyma of the hypothalamus. Despite the important role tanycytes have been proposed to play in mediating communication from the periphery to the brain, we understand very little about the ontology and function of these cells due to their limited abundance and lack of ability to genetically target this cell population reliably. To overcome these hurdles, we integrated existing hypothalamic single cell RNA sequencing data, focusing on tanycytes, to allow for more in-depth characterization of tanycytic cell types and their putative functions. Overall, we expect this dataset to serve as a resource for the research community. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Cells of the Nervous System)
Show Figures

Figure 1

14 pages, 3000 KiB  
Article
Reprogramming Human Adult Fibroblasts into GABAergic Interneurons
Cells 2021, 10(12), 3450; https://doi.org/10.3390/cells10123450 - 08 Dec 2021
Cited by 6 | Viewed by 3513
Abstract
Direct reprogramming is an appealing strategy to generate neurons from a somatic cell by forced expression of transcription factors. The generated neurons can be used for both cell replacement strategies and disease modelling. Using this technique, previous studies have shown that γ-aminobutyric acid [...] Read more.
Direct reprogramming is an appealing strategy to generate neurons from a somatic cell by forced expression of transcription factors. The generated neurons can be used for both cell replacement strategies and disease modelling. Using this technique, previous studies have shown that γ-aminobutyric acid (GABA) expressing interneurons can be generated from different cell sources, such as glia cells or fetal fibroblasts. Nevertheless, the generation of neurons from adult human fibroblasts, an easily accessible cell source to obtain patient-derived neurons, has proved to be challenging due to the intrinsic blockade of neuronal commitment. In this paper, we used an optimized protocol for adult skin fibroblast reprogramming based on RE1 Silencing Transcription Factor (REST) inhibition together with a combination of GABAergic fate determinants to convert human adult skin fibroblasts into GABAergic neurons. Our results show a successful conversion in 25 days with upregulation of neuronal gene and protein expression levels. Moreover, we identified specific gene combinations that converted fibroblasts into neurons of a GABAergic interneuronal fate. Despite the well-known difficulty in converting adult fibroblasts into functional neurons in vitro, we could detect functional maturation in the induced neurons. GABAergic interneurons have relevance for cognitive impairments and brain disorders, such as Alzheimer’s and Parkinson’s diseases, epilepsy, schizophrenia and autism spectrum disorders. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Cells of the Nervous System)
Show Figures

Graphical abstract

17 pages, 5127 KiB  
Article
A Step-by-Step Refined Strategy for Highly Efficient Generation of Neural Progenitors and Motor Neurons from Human Pluripotent Stem Cells
Cells 2021, 10(11), 3087; https://doi.org/10.3390/cells10113087 - 09 Nov 2021
Cited by 5 | Viewed by 3362
Abstract
Limited access to human neurons, especially motor neurons (MNs), was a major challenge for studying neurobiology and neurological diseases. Human pluripotent stem cells (hPSCs) could be induced as neural progenitor cells (NPCs) and further multiple neural subtypes, which provide excellent cellular sources for [...] Read more.
Limited access to human neurons, especially motor neurons (MNs), was a major challenge for studying neurobiology and neurological diseases. Human pluripotent stem cells (hPSCs) could be induced as neural progenitor cells (NPCs) and further multiple neural subtypes, which provide excellent cellular sources for studying neural development, cell therapy, disease modeling and drug screening. It is thus important to establish robust and highly efficient methods of neural differentiation. Enormous efforts have been dedicated to dissecting key signalings during neural commitment and accordingly establishing reliable differentiation protocols. In this study, we refined a step-by-step strategy for rapid differentiation of hPSCs towards NPCs within merely 18 days, combining the adherent and neurosphere-floating methods, as well as highly efficient generation (~90%) of MNs from NPCs by introducing refined sets of transcription factors for around 21 days. This strategy made use of, and compared, retinoic acid (RA) induction and dual-SMAD pathway inhibition, respectively, for neural induction. Both methods could give rise to highly efficient and complete generation of preservable NPCs, but with different regional identities. Given that the generated NPCs can be differentiated into the majority of excitatory and inhibitory neurons, but hardly MNs, we thus further differentiate NPCs towards MNs by overexpressing refined sets of transcription factors, especially by adding human SOX11, whilst improving a series of differentiation conditions to yield mature MNs for good modeling of motor neuron diseases. We thus refined a detailed step-by-step strategy for inducing hPSCs towards long-term preservable NPCs, and further specified MNs based on the NPC platform. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Cells of the Nervous System)
Show Figures

Figure 1

12 pages, 1272 KiB  
Article
Neuron-Specific IMP2 Overexpression by Synapsin Promoter-Driven AAV9: A Tool to Study Its Role in Axon Regeneration
Cells 2021, 10(10), 2654; https://doi.org/10.3390/cells10102654 - 05 Oct 2021
Cited by 1 | Viewed by 2311
Abstract
Insulin-like growth factor II mRNA-binding protein (IMP) 2 is one of the three homologues (IMP1-3) that belong to a conserved family of mRNA-binding proteins. Its alternative splice product is aberrantly expressed in human hepatocellular carcinoma, and it is therefore identified as HCC. Previous [...] Read more.
Insulin-like growth factor II mRNA-binding protein (IMP) 2 is one of the three homologues (IMP1-3) that belong to a conserved family of mRNA-binding proteins. Its alternative splice product is aberrantly expressed in human hepatocellular carcinoma, and it is therefore identified as HCC. Previous works have indicated that IMP1/ZBP1 (zipcode binding protein) is critical in axon guidance and regeneration by regulating localization and translation of specific mRNAs. However, the role of IMP2 in the nervous system is largely unknown. We used the synapsin promoter-driven adeno-associated viral (AAV) 9 constructs for transgene expression both in vitro and in vivo. These viral vectors have proven to be effective to transduce the neuron-specific overexpression of IMP2 and HCC. Applying this viral vector in the injury-conditioned dorsal root ganglion (DRG) culture demonstrates that overexpression of IMP2 significantly inhibits axons regenerating from the neurons, whereas overexpression of HCC barely interrupts the process. Quantitative analysis of binding affinities of IMPs to β-actin mRNA reveals that it is closely associated with their roles in axon regeneration. Although IMPs share significant structural homology, the distinctive functions imply their different ability to localize specific mRNAs and to regulate the axonal translation. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Cells of the Nervous System)
Show Figures

Figure 1

17 pages, 9302 KiB  
Article
A Histological and Morphometric Assessment of the Adult and Juvenile Rat Livers after Mild Traumatic Brain Injury
Cells 2021, 10(5), 1121; https://doi.org/10.3390/cells10051121 - 06 May 2021
Cited by 2 | Viewed by 2314
Abstract
Traumatic brain injury (TBI) is one of the most severe problems of modern medicine that plays a dominant role in morbidity and mortality in economically developed countries. Our experimental study aimed to evaluate the histological and morphological changes occurring in the liver of [...] Read more.
Traumatic brain injury (TBI) is one of the most severe problems of modern medicine that plays a dominant role in morbidity and mortality in economically developed countries. Our experimental study aimed to evaluate the histological and morphological changes occurring in the liver of adult and juvenile mildly traumatized rats (mTBI) in a time-dependent model. The experiment was performed on 70 adult white rats at three months of age and 70 juvenile rats aged 20 days. The mTBI was modelled by the Impact-Acceleration Model-free fall of weight in the parieto-occipital area. For histopathological comparison, the samples were taken on the 1st, 3rd, 5th, 7th, 14th, and 21st days after TBI. In adult rats, dominated changes in the microcirculatory bed in the form of blood stasis in sinusoidal capillaries and veins, RBC sludge, and adherence to the vessel wall with the subsequent appearance of perivascular and focal leukocytic infiltrates. In juvenile rats, changes in the parenchyma in the form of hepatocyte dystrophy prevailed. In both groups, the highest manifestation of the changes was observed on 5–7 days of the study. On 14–21 days, compensatory phenomena prevailed in both groups. Mild TBI causes changes in the liver of both adult and juvenile rats. The morphological pattern and dynamics of liver changes, due to mild TBI, are different in adult and juvenile rats. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Cells of the Nervous System)
Show Figures

Figure 1

32 pages, 6436 KiB  
Article
Comparative Neurodevelopment Effects of Bisphenol A and Bisphenol F on Rat Fetal Neural Stem Cell Models
Cells 2021, 10(4), 793; https://doi.org/10.3390/cells10040793 - 02 Apr 2021
Cited by 19 | Viewed by 2850
Abstract
Bisphenol A (BPA) is considered as one of the most extensively synthesized and used chemicals for industrial and consumer products. Previous investigations have established that exposure to BPA has been linked to developmental, reproductive, cardiovascular, immune, and metabolic effects. Several jurisdictions have imposed [...] Read more.
Bisphenol A (BPA) is considered as one of the most extensively synthesized and used chemicals for industrial and consumer products. Previous investigations have established that exposure to BPA has been linked to developmental, reproductive, cardiovascular, immune, and metabolic effects. Several jurisdictions have imposed restrictions and/or have banned the use of BPA in packaging material and other consumer goods. Hence, manufacturers have replaced BPA with its analogues that have a similar chemical structure. Some of these analogues have shown similar endocrine effects as BPA, while others have not been assessed. In this investigation, we compared the neurodevelopmental effects of BPA and its major replacement Bisphenol F (BPF) on rat fetal neural stem cells (rNSCs). rNSCs were exposed to cell-specific differentiation media with non-cytotoxic doses of BPA or BPF at the range of 0.05 M to 100 M concentrations and measured the degree of cell proliferation, differentiation, and morphometric parameters. Both of these compounds increased cell proliferation and impacted the differentiation rates of oligodendrocytes and neurons, in a concentration-dependent manner. Further, there were concentration-dependent decreases in the maturation of oligodendrocytes and neurons, with a concomitant increase in immature oligodendrocytes and neurons. In contrast, neither BPA nor BPF had any overall effect on cellular proliferation or the cytotoxicity of astrocytes. However, there was a concentration-dependent increase in astrocyte differentiation and morphological changes. Morphometric analysis for the astrocytes, oligodendrocytes, and neurons showed a reduction in the arborization. These data show that fetal rNSCs exposed to either BPA or BPF lead to comparable changes in the cellular differentiation, proliferation, and arborization processes. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Cells of the Nervous System)
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 3380 KiB  
Review
The PSA-NCAM-Positive “Immature” Neurons: An Old Discovery Providing New Vistas on Brain Structural Plasticity
Cells 2021, 10(10), 2542; https://doi.org/10.3390/cells10102542 - 26 Sep 2021
Cited by 20 | Viewed by 3653
Abstract
Studies on brain plasticity have undertaken different roads, tackling a wide range of biological processes: from small synaptic changes affecting the contacts among neurons at the very tip of their processes, to birth, differentiation, and integration of new neurons (adult neurogenesis). Stem cell-driven [...] Read more.
Studies on brain plasticity have undertaken different roads, tackling a wide range of biological processes: from small synaptic changes affecting the contacts among neurons at the very tip of their processes, to birth, differentiation, and integration of new neurons (adult neurogenesis). Stem cell-driven adult neurogenesis is an exception in the substantially static mammalian brain, yet, it has dominated the research in neurodevelopmental biology during the last thirty years. Studies of comparative neuroplasticity have revealed that neurogenic processes are reduced in large-brained mammals, including humans. On the other hand, large-brained mammals, with respect to rodents, host large populations of special “immature” neurons that are generated prenatally but express immature markers in adulthood. The history of these “immature” neurons started from studies on adhesion molecules carried out at the beginning of the nineties. The identity of these neurons as “stand by” cells “frozen” in a state of immaturity remained un-detected for long time, because of their ill-defined features and because clouded by research ef-forts focused on adult neurogenesis. In this review article, the history of these cells will be reconstructed, and a series of nuances and confounding factors that have hindered the distinction between newly generated and “immature” neurons will be addressed. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Cells of the Nervous System)
Show Figures

Figure 1

19 pages, 1369 KiB  
Review
Gut Microbiota and Neuroplasticity
Cells 2021, 10(8), 2084; https://doi.org/10.3390/cells10082084 - 13 Aug 2021
Cited by 21 | Viewed by 5697
Abstract
The accumulating evidence linking bacteria in the gut and neurons in the brain (the microbiota–gut–brain axis) has led to a paradigm shift in the neurosciences. Understanding the neurobiological mechanisms supporting the relevance of actions mediated by the gut microbiota for brain physiology and [...] Read more.
The accumulating evidence linking bacteria in the gut and neurons in the brain (the microbiota–gut–brain axis) has led to a paradigm shift in the neurosciences. Understanding the neurobiological mechanisms supporting the relevance of actions mediated by the gut microbiota for brain physiology and neuronal functioning is a key research area. In this review, we discuss the literature showing how the microbiota is emerging as a key regulator of the brain’s function and behavior, as increasing amounts of evidence on the importance of the bidirectional communication between the intestinal bacteria and the brain have accumulated. Based on recent discoveries, we suggest that the interaction between diet and the gut microbiota, which might ultimately affect the brain, represents an unprecedented stimulus for conducting new research that links food and mood. We also review the limited work in the clinical arena to date, and we propose novel approaches for deciphering the gut microbiota–brain axis and, eventually, for manipulating this relationship to boost mental wellness. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Cells of the Nervous System)
Show Figures

Figure 1

Back to TopTop