Application of Fluorescence Imaging in Cancer

A special issue of Cancers (ISSN 2072-6694). This special issue belongs to the section "Methods and Technologies Development".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 10663

Special Issue Editor


E-Mail Website
Guest Editor
Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
Interests: fluorescence imaging; cancer metabolism; cancer immunotherapy; NAD supplementation; bronchopulmonary dysplasia; neurodegenerative disorder

Special Issue Information

Dear Colleagues,

As a crucial component of cancer research, fluorescence imaging includes the visualization of the autofluorescence or intrinsic fluorescence of intracellular metabolites, externally administered chemical fluorescence probes, and genetically engineered fluorescence indicators, etc. This technology also plays an important role in certain surgical procedures, providing real-time insights. Fluorescence imaging serves as a versatile tool for researchers, facilitating mechanistic investigations, the identification of cancer diagnostic and prognostic biomarkers, the discovery of druggable targets, and the exploration of interactions between tumor cells and immune cells, tracking circulating cancer cells. These applications are merely a glimpse into its diverse utility. Given the extensive scope of its utility in cancer research and clinical applications, there is a compelling case for the creation of a dedicated Special Issue. This Special Issue will serve as a platform for the dissemination of the latest findings and breakthroughs in the various applications of fluorescence imaging within the context of cancer, fostering continued advancements in this dynamic field.

This Special Issue welcomes original research articles, comprehensive review or insightful commentary articles on previous studies in the realm of cancer research (cellular, tumor animal models), or clinical applications (real-time, biopsy, FFPE sections) focusing on the following areas: (1) imaging of the autofluorescence or intrinsic fluorescence of intracellular metabolites, either intensity-based or fluorescence lifetime-based; (2) development of, or by using, any types of fluorescence probes or reporters; (3) development of instrumentation for fluorescence imaging; (4) fluorescence spectroscopic studies that contribute to the improvement of fluorescence imaging; (5) (AI-assisted) fluorescence imaging analysis techniques. 

Dr. He Nucleus Xu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cancers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • NADH and FAD
  • redox ratio
  • chemical fluorescence probes
  • genetically engineered fluorescence indicators/reporters
  • fluorescence imaging analysis
  • fluorescence imaging instrumentation
  • fluorescence imaging of treatment response
  • fluorescence imaging in immunotherapy
  • fluorescence imaging in surgery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 38002 KiB  
Article
Differentiating Sinonasal Tumor Entities with Fluorescein-Enhanced Confocal Laser Endomicroscopy: A Step Forward in Precision Diagnostics
by Nina Wenda, Sebastian Wagner, Kai Fruth, Annette Fisseler-Eckhoff and Jan Gosepath
Cancers 2024, 16(24), 4245; https://doi.org/10.3390/cancers16244245 - 20 Dec 2024
Viewed by 724
Abstract
Abstract: Background/Objectives: Sinonasal malignancies are rare and highly diverse cancers that pose significant diagnostic challenges due to their variable histological features and complex anatomical locations. Accurate diagnosis is critical for guiding treatment, yet conventional methods often require multiple biopsies. This study aimed [...] Read more.
Abstract: Background/Objectives: Sinonasal malignancies are rare and highly diverse cancers that pose significant diagnostic challenges due to their variable histological features and complex anatomical locations. Accurate diagnosis is critical for guiding treatment, yet conventional methods often require multiple biopsies. This study aimed to evaluate the potential of confocal laser endomicroscopy (CLE) for real-time imaging of sinonasal tumors to characterize specific features of different entities and improve diagnostic precision. Methods: Ten patients with various sinonasal malignancies, including squamous cell carcinoma, adenocarcinoma, sinonasal undifferentiated carcinoma, olfactory neuroblastoma, sinonasal mucosal melanoma, and endonasal lymphoma, were examined using CLE during diagnostic endoscopy. CLE images were compared descriptively with histopathological cross-sections to identify unique imaging patterns for each tumor type. Results: CLE was feasible across all cases, with high-quality images obtained despite anatomical challenges in some cases. Characteristic features, such as vascular clusters in undifferentiated carcinoma, mucin-filled bubbles in adenocarcinoma, and small round cells in neuroblastoma, were identified and corresponded well with histopathological findings. CLE also helped guide biopsies by revealing areas with diagnostic relevance. Conclusions: CLE demonstrates promise as an adjunct diagnostic tool in sinonasal malignancies, offering real-time imaging that correlates with histopathological findings and aids in targeted biopsies. While this study provides preliminary insights into the utility of CLE, further research with larger cohorts and statistical validation is necessary to establish its diagnostic reliability and broader clinical application. Full article
(This article belongs to the Special Issue Application of Fluorescence Imaging in Cancer)
Show Figures

Figure 1

23 pages, 3368 KiB  
Article
Microbeam Radiation Therapy Bio-Dosimetry Enhanced by Novel Radiosensitiser Combinations in the Treatment of Brain Cancer
by Michael Valceski, Elette Engels, Sarah Vogel, Jason Paino, Dylan Potter, Carolyn Hollis, Abass Khochaiche, Micah Barnes, Alice O’Keefe, Matthew Cameron, Kiarn Roughley, Anatoly Rosenfeld, Michael Lerch, Stéphanie Corde and Moeava Tehei
Cancers 2024, 16(24), 4231; https://doi.org/10.3390/cancers16244231 - 19 Dec 2024
Viewed by 4879
Abstract
Background/Objectives: Brain cancer is notoriously resistant to traditional treatments, including radiotherapy. Microbeam radiation therapy (MRT), arrays of ultra-fast synchrotron X-ray beams tens of micrometres wide (called peaks) and spaced hundreds of micrometres apart (valleys), is an effective alternative to conventional treatments. MRT’s [...] Read more.
Background/Objectives: Brain cancer is notoriously resistant to traditional treatments, including radiotherapy. Microbeam radiation therapy (MRT), arrays of ultra-fast synchrotron X-ray beams tens of micrometres wide (called peaks) and spaced hundreds of micrometres apart (valleys), is an effective alternative to conventional treatments. MRT’s advantage is that normal tissues can be spared from harm whilst maintaining tumour control. Combining MRT with targeted radiosensitisers, such as nanoparticles, chemotherapeutic drugs, and halogenated pyrimidine drugs, can further improve radiotherapy by enhancing radiation damage. However, the underlying mechanisms of MRT are still being understood, which is essential to ensuring the reliable and successful use of MRT. Methods: An in vitro study was performed using γH2AX imaging, and quantification was performed via confocal microscopy and a clonogenic cell survival assay. Results: We show that methotrexate chemotherapeutics and iododeoxyuridine enhance MRT cell-killing and thulium oxide nanoparticles (TmNPs) broaden MRT peaks, and using γH2AX immunofluorescent confocal microscopy to quantify DNA damage, we further our knowledge of MRT mechanisms. γH2AX images verify the biological responses of cells aligning with the physical collimation of MRT, and we can accurately measure MRT microbeam characteristics bio-dosimetrically. The peak-to-valley dose ratio (PVDR), the ratio of the peak dose to the valley dose that characterises an MRT field, was accurately measured biologically using γH2AX imaging, despite studies previously finding this challenging. Conclusions: The measurement of biological PVDR has been performed for the first time with high-Z radiosensitisers, including nanoparticles, and several novel radiosensitiser-enhanced MRT mechanisms were discovered. Our results deepen our understanding of MRT with radiosensitisers, and can contribute to its accurate and future successful use in treating cancer. Full article
(This article belongs to the Special Issue Application of Fluorescence Imaging in Cancer)
Show Figures

Graphical abstract

15 pages, 3673 KiB  
Article
Quantitative Optical Redox Imaging of Melanoma Xenografts with Different Metastatic Potentials
by April Peng, He N. Xu, Lily Moon, Paul Zhang and Lin Z. Li
Cancers 2024, 16(9), 1669; https://doi.org/10.3390/cancers16091669 - 25 Apr 2024
Cited by 1 | Viewed by 1520
Abstract
To develop imaging biomarkers for tumors aggressiveness, our previous optical redox imaging (ORI) studies of the reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp, containing flavin adenine dinucleotide, i.e., FAD) in tumor xenografts of human melanoma associated the high optical redox ratio [...] Read more.
To develop imaging biomarkers for tumors aggressiveness, our previous optical redox imaging (ORI) studies of the reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp, containing flavin adenine dinucleotide, i.e., FAD) in tumor xenografts of human melanoma associated the high optical redox ratio (ORR = Fp/(Fp + NADH)) and its heterogeneity to the high invasive/metastatic potential, without having reported quantitative results for NADH and Fp. Here, we implemented a calibration procedure to facilitate imaging the nominal concentrations of tissue NADH and Fp in the mouse xenografts of two human melanoma lines, an indolent less metastatic A375P and a more metastatic C8161. Images of the redox indices (NADH, Fp, ORR) revealed the existence of more oxidized areas (OAs) and more reduced areas (RAs) within individual tumors. ORR was found to be higher and NADH lower in C8161 compared to that of A375P xenografts, both globally for the whole tumors and locally in OAs. The ORR in the OA can differentiate xenografts with a higher statistical significance than the global averaged ORR. H&E staining of the tumors indicated that the redox differences we identified were more likely due to intrinsically different cell metabolism, rather than variations in cell density. Full article
(This article belongs to the Special Issue Application of Fluorescence Imaging in Cancer)
Show Figures

Figure 1

17 pages, 4370 KiB  
Article
Ex Vivo Fluorescence Confocal Microscopy of MRI-Guided Targeted Prostate Biopsies for Rapid Detection of Clinically Significant Carcinomas—A Feasibility Study
by Ulf Titze, Barbara Titze, Torsten Hansen, Peter J. Barth, Furat Abd Ali, Fried Schneider, Matthias Benndorf and Karl-Dietrich Sievert
Cancers 2024, 16(5), 873; https://doi.org/10.3390/cancers16050873 - 22 Feb 2024
Cited by 3 | Viewed by 1370
Abstract
Background: MRI-guided prostate biopsies from visible tumor-specific lesions (TBx) can be used to diagnose clinically significant carcinomas (csPCa) requiring treatment more selectively than conventional systematic biopsies (SBx). Ex vivo fluorescence confocal microscopy (FCM) is a novel technique that can be used to examine [...] Read more.
Background: MRI-guided prostate biopsies from visible tumor-specific lesions (TBx) can be used to diagnose clinically significant carcinomas (csPCa) requiring treatment more selectively than conventional systematic biopsies (SBx). Ex vivo fluorescence confocal microscopy (FCM) is a novel technique that can be used to examine TBx prior to conventional histologic workup. Methods: TBx from 150 patients were examined with FCM on the day of collection. Preliminary findings were reported within 2 h of collection. The results were statistically compared with the final histology. Results: 27/40 (68%) of the csPCa were already recognized in the intraday FCM in accordance with the results of conventional histology. Even non-significant carcinomas (cisPCa) of the intermediate and high-risk groups (serum prostate-specific antigen (PSA) > 10 or 20 ng/mL) according to conventional risk stratifications were reliably detectable. In contrast, small foci of cisPCa were often not detected or were difficult to distinguish from reactive changes. Conclusion: The rapid reporting of preliminary FCM findings helps to reduce the psychological stress on patients, and can improve the clinical management of csPCa. Additional SBx can be avoided in individual cases, leading to lower rates of complications and scarring in the future surgical area. Additional staging examinations can be arranged without losing time. FCM represents a promising basis for future AI-based diagnostic algorithms. Full article
(This article belongs to the Special Issue Application of Fluorescence Imaging in Cancer)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 826 KiB  
Review
Current and Future Applications of 5-Aminolevulinic Acid in Neurosurgical Oncology
by Jia-Shu Chen, Jacob S. Young and Mitchel S. Berger
Cancers 2025, 17(8), 1332; https://doi.org/10.3390/cancers17081332 - 15 Apr 2025
Viewed by 263
Abstract
Maximal safe surgical resection is the gold standard in brain tumor surgery. Fluorescence-guided surgery (FGS) is one of many intraoperative techniques that have been designed with the intention of accomplishing this goal. 5-aminolevulinic acid (5-ALA) is one of the main fluorophores that facilitates [...] Read more.
Maximal safe surgical resection is the gold standard in brain tumor surgery. Fluorescence-guided surgery (FGS) is one of many intraoperative techniques that have been designed with the intention of accomplishing this goal. 5-aminolevulinic acid (5-ALA) is one of the main fluorophores that facilitates FGS in neurosurgical oncology. Multiple different types of brain tumors can take in and metabolize 5-ALA into protoporphyrin IX (PpIX) through the mitochondria heme biosynthesis pathway. PpIX then selectively accumulates in brain tumor cells due to decreased ferrochelatase activity and emits red fluorescence (630–720 nm) when excited with blue light (375–440 nm). This mechanism allows neurosurgeons to better visualize tumor burden and increase extent of resection while preserving non-cancerous brain parenchyma and, specifically, eloquent white matter tracts, if combined with mapping techniques, thereby minimizing morbidity while improving survival. While 5-ALA use is well established in the treatment of high-grade gliomas, its applicability in recurrent high-grade and non-enhancing IDH-mutant low-grade gliomas, as well as non-glial tumors, is less established or limited by certain features of their cellular and molecular biology. This review aims to discuss the current landscape of 5-ALA utility across the diverse range of brain tumors, practical considerations that optimize its current use in neurosurgery, modern clinical limitations of 5-ALA, and how its application can be expanded by combining its use with other techniques that overcome current limitations. Full article
(This article belongs to the Special Issue Application of Fluorescence Imaging in Cancer)
Show Figures

Figure 1

25 pages, 1447 KiB  
Review
Potential Probes for Targeted Intraoperative Fluorescence Imaging in Gastric Cancer
by Serena Martinelli, Laura Fortuna, Francesco Coratti, Federico Passagnoli, Amedeo Amedei and Fabio Cianchi
Cancers 2024, 16(24), 4141; https://doi.org/10.3390/cancers16244141 - 12 Dec 2024
Viewed by 1065
Abstract
Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract associated with high mortality rates and accounting for approximately 1 million new cases diagnosed annually. Surgery, particularly radical gastrectomy, remains the primary treatment; however, there are currently no specific approaches to better [...] Read more.
Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract associated with high mortality rates and accounting for approximately 1 million new cases diagnosed annually. Surgery, particularly radical gastrectomy, remains the primary treatment; however, there are currently no specific approaches to better distinguish malignant from healthy tissue or to differentiate between metastatic and non-metastatic lymph nodes. As a result, surgeons have to remove all lymph nodes indiscriminately, increasing intraoperative risks for patients and prolonging hospital stay. Near-infrared fluorescence imaging with indocyanine green (ICG) can provide real-time visualization of the surgical field using both conventional laparoscopy and robotic mini-invasive precision surgery platforms. However, its application shows some limits, as ICG is a non-targeted contrast agent. Several studies are now investigating the potential efficacy of fluorescent targeted agents that could selectively bind to the tumor tissue, offering a valuable tool for metastatic mapping during robotic gastrectomy. This review aims to summarize the key fluorescent agents that have been developed to recognize GC markers, as well as those targeting the tumor microenvironment (TME) and metabolic features. These agents hold great potential as valuable tools for enhancing precision surgery in robotic gastrectomy procedures improving the clinical recovery of GC patients. Full article
(This article belongs to the Special Issue Application of Fluorescence Imaging in Cancer)
Show Figures

Figure 1

Back to TopTop