New Trends and Technologies in Modern Neurosurgery

A special issue of Brain Sciences (ISSN 2076-3425). This special issue belongs to the section "Neurosurgery and Neuroanatomy".

Deadline for manuscript submissions: closed (21 June 2024) | Viewed by 13099

Special Issue Editors


E-Mail Website
Guest Editor
1. Institute of Neurosurgery, Catholic Fondazione Policlinico Agostino Gemelli, Catholic University Rome, Rome, Italy
2. Craniovertebral Junction Surgery Operative Unit, Master II Degree and Research Center, Catholic University Rome, Rome, Italy
Interests: spine; skull base; craniocervical junction; brain tumors
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Section of Neurosurgery, Department of Neuroscience, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
Interests: neurotrauma; CSF dynamic disturbances; hydrocephalus
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleauges,

The neuraxis, the skull base along with its offshoot the spine, replicates a bone funnel as a vessel, sustaining the brain, the cerebellum and the spinal cord, along with cranial and radicular nerves. The knowledge of the embryology, anatomy, physiology and pathophysiology of diseases and the of more effective surgical pathways for engaging with and removing them surgical diseases is of paramount importance in surgical cultural heritage and should be strongly encouraged and supported in young neurosurgeons. New trends and technologies are growing quickly and effectively and the the aim of the Issue is to raise awareness in relation to their use in the modern neurosurgical practice. The spirit of the Issue is to to drive the practical interests of the neurosurgeons in further investigating and implementing such blooming new trends in technologies, both in research and in surgical practice. We invite any neurosurgically tailored papers which make clear reference to new trends and technologies in this challenging field.

Dr. Massimiliano Visocchi
Dr. Francesco Signorelli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Brain Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • spine
  • craniocervical junction
  • brain tumors
  • skull base new
  • CSF dynamics and hydrocephalus
  • new trends and technologies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

17 pages, 2309 KiB  
Article
Low-Cost 3D Models for Cervical Spine Tumor Removal Training for Neurosurgery Residents
by Albert Sufianov, Carlos Salvador Ovalle, Omar Cruz, Javier Contreras, Emir Begagić, Siddarth Kannan, Andreina Rosario Rosario, Gennady Chmutin, Garifullina Nargiza Askatovna, Jesus Lafuente, Jose Soriano Sanchez, Renat Nurmukhametov, Manuel Eduardo Soto García, Nikolay Peev, Mirza Pojskić, Gervith Reyes-Soto, Ismail Bozkurt and Manuel De Jesus Encarnación Ramírez
Brain Sci. 2024, 14(6), 547; https://doi.org/10.3390/brainsci14060547 - 27 May 2024
Cited by 3 | Viewed by 1022
Abstract
Background and Objectives: Spinal surgery, particularly for cervical pathologies such as myelopathy and radiculopathy, requires a blend of theoretical knowledge and practical skill. The complexity of these conditions, often necessitating surgical intervention, underscores the need for intricate understanding and precision in execution. Advancements [...] Read more.
Background and Objectives: Spinal surgery, particularly for cervical pathologies such as myelopathy and radiculopathy, requires a blend of theoretical knowledge and practical skill. The complexity of these conditions, often necessitating surgical intervention, underscores the need for intricate understanding and precision in execution. Advancements in neurosurgical training, especially with the use of low-cost 3D models for simulating cervical spine tumor removal, are revolutionizing this field. These models provide the realistic and hands-on experience crucial for mastering complex neurosurgical techniques, filling gaps left by traditional educational methods. Materials and Methods: This study aimed to assess the effectiveness of 3D-printed cervical vertebrae models in enhancing surgical skills, focusing on tumor removal, and involving 20 young neurosurgery residents. These models, featuring silicone materials to simulate the spinal cord and tumor tissues, provided a realistic training experience. The training protocol included a laminectomy, dural incision, and tumor resection, using a range of microsurgical tools, focusing on steps usually performed by senior surgeons. Results: The training program received high satisfaction rates, with 85% of participants extremely satisfied and 15% satisfied. The 3D models were deemed very realistic by 85% of participants, effectively replicating real-life scenarios. A total of 80% found that the simulated pathologies were varied and accurate, and 90% appreciated the models’ accurate tactile feedback. The training was extremely useful for 85% of the participants in developing surgical skills, with significant post-training confidence boosts and a strong willingness to recommend the program to peers. Conclusions: Continuing laboratory training for residents is crucial. Our model offers essential, accessible training for all hospitals, regardless of their resources, promising improved surgical quality and patient outcomes across various pathologies. Full article
(This article belongs to the Special Issue New Trends and Technologies in Modern Neurosurgery)
Show Figures

Figure 1

10 pages, 838 KiB  
Article
Motor Pathways Reorganization following Surgical Decompression for Degenerative Cervical Myelopathy: A Combined Navigated Transcranial Magnetic Stimulation and Clinical Outcome Study
by Alessandro Boaro, Sonia Nunes, Chiara Bagattini, Valeria Di Caro, Francesca Siddi, Fabio Moscolo, Christian Soda and Francesco Sala
Brain Sci. 2024, 14(2), 124; https://doi.org/10.3390/brainsci14020124 - 25 Jan 2024
Viewed by 1151
Abstract
(1) Background: Degenerative cervical myelopathy is one of the main causes of disability in the elderly. The treatment of choice in patients with clear symptomatology and radiological correlation is surgical decompression. The application of navigated transcranial magnetic stimulation (nTMS) techniques has the potential [...] Read more.
(1) Background: Degenerative cervical myelopathy is one of the main causes of disability in the elderly. The treatment of choice in patients with clear symptomatology and radiological correlation is surgical decompression. The application of navigated transcranial magnetic stimulation (nTMS) techniques has the potential to provide additional insights into the cortical and corticospinal behavior of the myelopathic cord and to better characterize the possible extent of clinical recovery. The objective of our study was to use nTMS to evaluate the effect of surgical decompression on neurophysiological properties at the cortical and corticospinal level and to better characterize the extent of possible clinical recovery. (2) Methods: We conducted a longitudinal study in which we assessed and compared nTMS neurophysiological indexes and clinical parameters (modified Japanese Orthopedic Association score and nine-hole pegboard test) before surgery, at 6 months, and at 12 months’ follow-up in a population of 15 patients. (3) Results: We found a significant reduction in resting motor threshold (RMT; average 7%), cortical silent period (CSP; average 15%), and motor area (average 25%) at both 6 months and 12 months. A statistically significant linear correlation emerged between recruitment curve (RC) values obtained at follow-up appointments and at baseline (r = 0.95 at 6 months, r = 0.98 at 12 months). A concomitant improvement in the mJOA score and in the nine-hole pegboard task was observed after surgery. (4) Conclusions: Our results suggest that surgical decompression of the myelopathic spinal cord improves the neurophysiological balance at the cortical and corticospinal level, resulting in clinically significant recovery. Such findings contribute to the existing evidence characterizing the brain and the spinal cord as a dynamic system capable of functional and reversible plasticity and provide useful clinical insights to be used for patient counseling. Full article
(This article belongs to the Special Issue New Trends and Technologies in Modern Neurosurgery)
Show Figures

Figure 1

13 pages, 3746 KiB  
Article
Assessing the Training in Neurosurgery with the Implementation of VITOM-3D Exoscope: Learning Curve on Experimental Model in Neurosurgical Practice
by Giuseppe Roberto Giammalva, Federica Paolini, Flavia Meccio, Evier Andrea Giovannini, Alessandra Provenzano, Lapo Bonosi, Lara Brunasso, Roberta Costanzo, Rosa Maria Gerardi, Rina Di Bonaventura, Francesco Signorelli, Alessio Albanese, Domenico Gerardo Iacopino, Rosario Maugeri and Massimiliano Visocchi
Brain Sci. 2023, 13(10), 1409; https://doi.org/10.3390/brainsci13101409 - 2 Oct 2023
Cited by 1 | Viewed by 1031
Abstract
(1) Background: Innovation and continuous demand in the field of visual enhancing technologies and video streaming have led to the discovery of new systems capable of improving visualization and illumination of the surgical field. The exoscope was brought into neurosurgical routine, and nearly [...] Read more.
(1) Background: Innovation and continuous demand in the field of visual enhancing technologies and video streaming have led to the discovery of new systems capable of improving visualization and illumination of the surgical field. The exoscope was brought into neurosurgical routine, and nearly ten years later, modern 3D systems have been introduced and tested, giving encouraging results. (2) Methods: In order to evaluate the surgeon’s confidence with the exoscope and their increasing ability in terms of time spent and quality of the final achievement since their first encounter with the technique, an experimental trial on 18 neurosurgeons from a single Institution was performed to evaluate the learning curve for the use of the VITOM-3D exoscope in neurosurgical practice on a model of brain and dura mater. (3) Results: A significant improvement in the quality of the performance, number of errors made, and reduction in the time was found after the third iteration of the task, by when almost all the participants felt more comfortable and confident. No significant differences between senior neurosurgeons and resident neurosurgeons were reported. (4) Conclusions: Our results show that three iterations are enough to gain confidence with the exoscope from its first use, regardless of previous experience and training with an operating microscope. Full article
(This article belongs to the Special Issue New Trends and Technologies in Modern Neurosurgery)
Show Figures

Figure 1

Review

Jump to: Research, Other

23 pages, 2846 KiB  
Review
Integrating Augmented Reality in Spine Surgery: Redefining Precision with New Technologies
by Manuel De Jesus Encarnacion Ramirez, Gennady Chmutin, Renat Nurmukhametov, Gervith Reyes Soto, Siddarth Kannan, Gennadi Piavchenko, Vladmir Nikolenko, Ibrahim E. Efe, Alberto Ramírez Romero, Jeff Ntalaja Mukengeshay, Keith Simfukwe, Tshiunza Mpoyi Cherubin, Federico Nicolosi, Salman Sharif, Juan Carlos Roa and Nicola Montemurro
Brain Sci. 2024, 14(7), 645; https://doi.org/10.3390/brainsci14070645 - 27 Jun 2024
Cited by 2 | Viewed by 1630
Abstract
Introduction: The integration of augmented reality (AR) in spine surgery marks a significant advancement, enhancing surgical precision and patient outcomes. AR provides immersive, three-dimensional visualizations of anatomical structures, facilitating meticulous planning and execution of spine surgeries. This technology not only improves spatial understanding [...] Read more.
Introduction: The integration of augmented reality (AR) in spine surgery marks a significant advancement, enhancing surgical precision and patient outcomes. AR provides immersive, three-dimensional visualizations of anatomical structures, facilitating meticulous planning and execution of spine surgeries. This technology not only improves spatial understanding and real-time navigation during procedures but also aims to reduce surgical invasiveness and operative times. Despite its potential, challenges such as model accuracy, user interface design, and the learning curve for new technology must be addressed. AR’s application extends beyond the operating room, offering valuable tools for medical education and improving patient communication and satisfaction. Material and methods: A literature review was conducted by searching PubMed and Scopus databases using keywords related to augmented reality in spine surgery, covering publications from January 2020 to January 2024. Results: In total, 319 articles were identified through the initial search of the databases. After screening titles and abstracts, 11 articles in total were included in the qualitative synthesis. Conclusion: Augmented reality (AR) is becoming a transformative force in spine surgery, enhancing precision, education, and outcomes despite hurdles like technical limitations and integration challenges. AR’s immersive visualizations and educational innovations, coupled with its potential synergy with AI and machine learning, indicate a bright future for surgical care. Despite the existing obstacles, AR’s impact on improving surgical accuracy and safety marks a significant leap forward in patient treatment and care. Full article
(This article belongs to the Special Issue New Trends and Technologies in Modern Neurosurgery)
Show Figures

Figure 1

18 pages, 724 KiB  
Review
Are Sex Differences in Collegiate and High School Sports-Related Concussion Reflected in the Guidelines? A Scoping Review
by Patryk A. Musko and Andreas K. Demetriades
Brain Sci. 2023, 13(9), 1310; https://doi.org/10.3390/brainsci13091310 - 12 Sep 2023
Cited by 9 | Viewed by 2046
Abstract
Background: Sport-related concussion (SRC) is a common sport injury. Females are participating in sports at increasing rates, and there is growing awareness that female athletes may be more vulnerable to SRC. Objectives: We aimed to identify sex differences in epidemiology, clinical [...] Read more.
Background: Sport-related concussion (SRC) is a common sport injury. Females are participating in sports at increasing rates, and there is growing awareness that female athletes may be more vulnerable to SRC. Objectives: We aimed to identify sex differences in epidemiology, clinical manifestation and assessment of SRC and examine how these relate to the 6th International Conference on Concussion in Sport (ICCS). Methods: We conducted a scoping review of the Medline database and identified 58 studies examining the effects of sex on SRC in collegiate and high school athletes that were written in English and published in a peer-reviewed journal between March 2012 and March 2022. Results: We found that female athletes suffer higher rates of concussion in sex-comparable sports, in particular soccer. Female athletes experience more somatic symptoms—headache/migraine/sleep disturbance—and may take longer to recover from concussion. Sex differences were also identified regarding some aspects of sideline concussion assessment with the Sport Concussion Assessment Tool. Conclusions: Females are at greater risk and experience SRC differently than males; this is mostly likely due to a combination of biomechanical factors, differences in neck musculature and hormonal and social factors. Sex differences are not widely addressed by the 6th ICSS, which informs many sports’ concussion protocols. Full article
(This article belongs to the Special Issue New Trends and Technologies in Modern Neurosurgery)
Show Figures

Figure 1

Other

Jump to: Research, Review

18 pages, 3237 KiB  
Systematic Review
Exploring Pathways for Pain Relief in Treatment and Management of Lumbar Foraminal Stenosis: A Review of the Literature
by Renat Nurmukhametov, Manuel De Jesus Encarnacion Ramirez, Medet Dosanov, Abakirov Medetbek, Stepan Kudryakov, Gervith Reyes Soto, Claudia B. Ponce Espinoza, Jeff Natalaja Mukengeshay, Tshiunza Mpoyi Cherubin, Vladimir Nikolenko, Artem Gushcha, Salman Sharif and Nicola Montemurro
Brain Sci. 2024, 14(8), 740; https://doi.org/10.3390/brainsci14080740 - 24 Jul 2024
Viewed by 979
Abstract
Background: Lumbar foraminal stenosis (LFS) involves the narrowing of neural foramina, leading to nerve compression, significant lower back pain and radiculopathy, particularly in the aging population. Management includes physical therapy, medications and potentially invasive surgeries such as foraminotomy. Advances in diagnostic and treatment [...] Read more.
Background: Lumbar foraminal stenosis (LFS) involves the narrowing of neural foramina, leading to nerve compression, significant lower back pain and radiculopathy, particularly in the aging population. Management includes physical therapy, medications and potentially invasive surgeries such as foraminotomy. Advances in diagnostic and treatment strategies are essential due to LFS’s complexity and prevalence, which underscores the importance of a multidisciplinary approach in optimizing patient outcomes. Method: This literature review on LFS employed a systematic methodology to gather and synthesize recent scientific data. A comprehensive search was conducted across PubMed, Scopus and Cochrane Library databases using specific keywords related to LFS. The search, restricted to English language articles from 1 January 2000 to 31 December 2023, focused on peer-reviewed articles, clinical trials and reviews. Due to the heterogeneity among the studies, data were qualitatively synthesized into themes related to diagnosis, treatment and pathophysiology. Results: This literature review on LFS analyzed 972 articles initially identified, from which 540 remained after removing duplicates. Following a rigorous screening process, 20 peer-reviewed articles met the inclusion criteria and were reviewed. These studies primarily focused on evaluating the diagnostic accuracy, treatment efficacy and pathophysiological insights into LFS. Conclusion: The comprehensive review underscores the necessity for precise diagnostic and management strategies for LFS, highlighting the role of a multidisciplinary approach and the utility of a unified classification system in enhancing patient outcomes in the face of this condition’s increasing prevalence. Full article
(This article belongs to the Special Issue New Trends and Technologies in Modern Neurosurgery)
Show Figures

Figure 1

14 pages, 7642 KiB  
Systematic Review
Infratentorial Relapsing Neuroglial Tumors in Adults: Management and Unsolved Issues—A Systematic Review
by Lara Brunasso, Chiara Avallone, Ada Maria Florena and Giovanni Grasso
Brain Sci. 2024, 14(3), 286; https://doi.org/10.3390/brainsci14030286 - 18 Mar 2024
Viewed by 1305
Abstract
(1) Background: Gangliogliomas are rare tumors accounting for about 0.4% of all central nervous system tumors. They are usually located in the temporal lobes of children and young adults, though such tumors in the infratentorial region and adult-age patients rarely reported. (2) Methods: [...] Read more.
(1) Background: Gangliogliomas are rare tumors accounting for about 0.4% of all central nervous system tumors. They are usually located in the temporal lobes of children and young adults, though such tumors in the infratentorial region and adult-age patients rarely reported. (2) Methods: A systematic review on ganglioglioma with infratentorial location in the adult population was conducted in accordance with the PRISMA guidelines. A total of 275 articles were found, and 23 were included. Demographic data, the location and histology of the lesion, pre-operative neurological status, the type of surgery, recurrence, radiotherapy/chemotherapy adjuvant treatments, neurological outcomes and follow-up information were collected. We also presented an illustrative case. (3) Results: A total of 27 patients were included. In 51%, the location was the cerebellum; in 40%, it was the fourth ventricle; in 11%, it was brainstem; and in 4%, it was the cerebellopontine angle. STR was performed in 44%, GTR in 26% and biopsy in 15% of the cases. Adjuvant radiotherapy was found in 22% of cases. Disease recurrence occurred in 15% of patients between 1 and 12 months after surgery with a diagnosis of high-grade ganglioglioma, while in six cases, no disease recurrence was documented. (4) Conclusions: Infratentorial glioneuronal tumors are rare findings in the adult population. Histopathological characterization does not seem to fully reflect their true behavior. Future studies are warranted for better characterizing histopathological findings and treatment. Full article
(This article belongs to the Special Issue New Trends and Technologies in Modern Neurosurgery)
Show Figures

Figure 1

17 pages, 1155 KiB  
Systematic Review
A Systematic Review of Nanomedicine in Glioblastoma Treatment: Clinical Efficacy, Safety, and Future Directions
by Minaam Farooq, Gianluca Scalia, Giuseppe E. Umana, Urja A. Parekh, Faiza Naeem, Sayeda Fatima Abid, Muhammad Hammad Khan, Shah Gul Zahra, Hrishikesh P. Sarkar and Bipin Chaurasia
Brain Sci. 2023, 13(12), 1727; https://doi.org/10.3390/brainsci13121727 - 18 Dec 2023
Cited by 3 | Viewed by 2633
Abstract
Background: Glioblastoma (GBM) is categorized as a grade IV astrocytoma by the World Health Organization (WHO), representing the most aggressive and prevalent form of glioma. It presents a significant clinical challenge, with limited treatment options and poor prognosis. This systematic review evaluates the [...] Read more.
Background: Glioblastoma (GBM) is categorized as a grade IV astrocytoma by the World Health Organization (WHO), representing the most aggressive and prevalent form of glioma. It presents a significant clinical challenge, with limited treatment options and poor prognosis. This systematic review evaluates the efficacy and safety of various nanotherapy approaches for GBM and explores future directions in tumor management. Nanomedicine, which involves nanoparticles in the 1–100 nm range, shows promise in improving drug delivery and targeting tumor cells. Methods: Following PRISMA guidelines, a systematic search of databases including Google Scholar, NCBI PubMed, Cochrane Library, and ClinicalTrials.gov was conducted to identify clinical trials on GBM and nanomedicine. The primary outcome measures were median overall survival, progression-free survival, and quality of life assessed through Karnofsky performance scores. The safety profile was assessed by adverse events. Results: The analysis included 225 GBM patients, divided into primary and recurrent sub-populations. Primary GBM patients had a median overall survival of 6.75 months, while recurrent GBM patients had a median overall survival of 9.7 months. The mean PFS period was 2.3 months and 3.92 months in primary GBM and recurrent GBM patients, respectively. Nanotherapy showed an improvement in quality of life, with KPS scores increasing after treatment in recurrent GBM patients. Adverse events were observed in 14.2% of patients. Notably, Bevacizumab therapy exhibited better survival outcomes but with a higher incidence of adverse events. Conclusions: Nanotherapy offers a modest increase in survival with fewer severe side effects. It shows promise in improving the quality of life, especially in recurrent GBM patients. However, it falls short in terms of overall survival compared to Bevacizumab. The heterogeneous nature of treatment protocols and reporting methods highlights the need for standardized multicenter trials to further evaluate the potential of nanomedicine in GBM management. Full article
(This article belongs to the Special Issue New Trends and Technologies in Modern Neurosurgery)
Show Figures

Figure 1

Back to TopTop