Multidimensional Nanomaterial-Based Biosensors for Environmental and Healthcare Monitoring

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Nano- and Micro-Technologies in Biosensors".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 2807

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Interests: bio-nanohybrid materials; flexible sensors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The secrets of life are hidden in the molecular world, waiting to be discovered. Sensors equipped with multifunctional materials provide the key to unlocking these mysteries. This Special Issue delves into the transformative power of multifunctional materials, including nanomaterials, polymers, metals, and composites. Each of these multifunctional materials can detect subtle signals, such as atmospheric carbon dioxide, humidity, and the temperature and movement of the human body.

This Special Issue is an invitation to explore the frontiers of multifunctional sensors. We delve into the physicochemical properties of these multifunctional materials, unveiling the secrets of their enhanced performance. We showcase cutting-edge research, highlighting real-world applications in monitoring human physiological signals, temperature, air, and water quality, assessing soil health, and more. Join us on this journey as we reveal the power of multifunctional materials to protect people and the planet.

Prof. Dr. Zhiqiang Su
Dr. Xiaoyuan Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • multidimensional nanomaterials
  • biosensors
  • environmental signals
  • healthcare sensing
  • ecological monitoring

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 2087 KiB  
Article
Kinematic Monitoring of the Thorax During the Respiratory Cycle Using a Biopolymer-Based Strain Sensor: A Chitosan–Glycerol–Graphite Composite
by María Claudia Rivas Ebner, Emmanuel Ackah, Seong-Wan Kim, Young-Seek Seok and Seung Ho Choi
Biosensors 2025, 15(8), 523; https://doi.org/10.3390/bios15080523 - 9 Aug 2025
Viewed by 305
Abstract
This study presents the development and the mechanical and clinical characterization of a flexible biodegradable chitosan–glycerol–graphite composite strain sensor for real-time respiratory monitoring, where the main material, chitosan, is derived and extracted from Tenebrio Molitor larvae shells. Chitosan was extracted using a sustainable, [...] Read more.
This study presents the development and the mechanical and clinical characterization of a flexible biodegradable chitosan–glycerol–graphite composite strain sensor for real-time respiratory monitoring, where the main material, chitosan, is derived and extracted from Tenebrio Molitor larvae shells. Chitosan was extracted using a sustainable, low-impact protocol and processed into a stretchable and flexible film through glycerol plasticization and graphite integration, forming a conductive biocomposite. The sensor, fabricated in a straight-line geometry to ensure uniform strain distribution and signal stability, was evaluated for its mechanical and electrical performance under cyclic loading. Results demonstrate linearity, repeatability, and responsiveness to strain variations in the stain sensor during mechanical characterization and performance, ranging from 1 to 15%, with minimal hysteresis and fast recovery times. The device reliably captured respiratory cycles during normal breathing across three different areas of measurement: the sternum, lower ribs, and diaphragm. The strain sensor also identified distinct breathing patterns, including eupnea, tachypnea, bradypnea, apnea, and Kussmaul respiration, showing the capability to sense respiratory cycles during pathological situations. Compared to conventional monitoring systems, the sensor offers superior skin conformity, better adhesion, comfort, and improved signal quality without the need for invasive procedures or complex instrumentation. Its low-cost, biocompatible design holds strong potential for wearable healthcare applications, particularly in continuous respiratory tracking, sleep disorder diagnostics, and home-based patient monitoring. Future work will focus on wireless integration, environmental durability, and clinical validation. Full article
Show Figures

Figure 1

16 pages, 3334 KiB  
Article
Highly Stretchable Double Network Ionogels for Monitoring Physiological Signals and Detecting Sign Language
by Ya Jiang, Shujing Zhao, Fengyuan Wang, Xiaoyuan Zhang and Zhiqiang Su
Biosensors 2024, 14(5), 227; https://doi.org/10.3390/bios14050227 - 3 May 2024
Cited by 3 | Viewed by 2041
Abstract
At the heart of the non-implantable electronic revolution lies ionogels, which are remarkably conductive, thermally stable, and even antimicrobial materials. Yet, their potential has been hindered by poor mechanical properties. Herein, a double network (DN) ionogel crafted from 1-Ethyl-3-methylimidazolium chloride ([Emim]Cl), acrylamide (AM), [...] Read more.
At the heart of the non-implantable electronic revolution lies ionogels, which are remarkably conductive, thermally stable, and even antimicrobial materials. Yet, their potential has been hindered by poor mechanical properties. Herein, a double network (DN) ionogel crafted from 1-Ethyl-3-methylimidazolium chloride ([Emim]Cl), acrylamide (AM), and polyvinyl alcohol (PVA) was constructed. Tensile strength, fracture elongation, and conductivity can be adjusted across a wide range, enabling researchers to fabricate the material to meet specific needs. With adjustable mechanical properties, such as tensile strength (0.06–5.30 MPa) and fracture elongation (363–1373%), this ionogel possesses both robustness and flexibility. This ionogel exhibits a bi-modal response to temperature and strain, making it an ideal candidate for strain sensor applications. It also functions as a flexible strain sensor that can detect physiological signals in real time, opening doors to personalized health monitoring and disease management. Moreover, these gels’ ability to decode the intricate movements of sign language paves the way for improved communication accessibility for the deaf and hard-of-hearing community. This DN ionogel lays the foundation for a future in which e-skins and wearable sensors will seamlessly integrate into our lives, revolutionizing healthcare, human–machine interaction, and beyond. Full article
Show Figures

Figure 1

Back to TopTop