Development, Characterization, and Application of Bioactive Peptides, Diagnostic Biomarkers, and Pharmaceutical Proteins

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates".

Deadline for manuscript submissions: closed (31 October 2024) | Viewed by 32003

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Chungbuk 27487, Republic of Korea
Interests: protein structure; protein engineering; biopharmaceuticals; bioactive peptides

E-Mail Website
Guest Editor
College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
Interests: structure-based drug discovery; antibody engineering; biopharmaceutical analysis

Special Issue Information

Dear Colleagues,

As proteins and peptides are the most abundant and versatile biomolecules playing many critical roles in nearly every life process, many proteins/peptides are also deeply associated with human health and diseases. Various protein/peptide molecules have been proposed as biomarkers with potential diagnostic or prognostic value, and renewed interests in exploring peptides/proteins as crucial targets for therapeutic purposes has arisen. Bioactive proteins/peptides including various enzymes, antibodies, and peptide hormones have been developed and serve as biopharmaceuticals for clinical use. In addition, the advances in protein/peptide technology include the development of pharmaceutical molecular platforms such as peptide nanoparticles and drug delivery systems.

For this Special Issue, we would like to invite review papers or original research articles that address the topic of biopharmaceutical proteins/peptides. Studies that contribute to advancing the molecular engineering and production process of the biopharmaceutical peptides/proteins, as well as manuscripts providing novel application-oriented perspectives, are also highly welcome.

We look forward to receiving your contributions.

Prof. Dr. Hyung-Sik Won
Prof. Dr. Ji-Hun Kim
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive peptides
  • biomarker proteins
  • pharmaceutical proteins
  • protein engineering
  • protein/peptide nanoparticles
  • protein/peptide production process
  • enzymology
  • antibody technology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 985 KiB  
Communication
Enhancing Stability and Bioavailability of Peptidylglycine Alpha-Amidating Monooxygenase in Circulation for Clinical Use
by Yulia Ilina, Paul Kaufmann, Michaela Press, Theo Ikenna Uba and Andreas Bergmann
Biomolecules 2025, 15(2), 224; https://doi.org/10.3390/biom15020224 - 4 Feb 2025
Viewed by 741
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM) is the only enzyme known to catalyze C-terminal amidation, a final post-translational modification step essential for the biological activity of over 70 bioactive peptides, including adrenomedullin (ADM), calcitonin gene-related peptide (CGRP), amylin, neuropeptide Y (NPY), and others. Bioactive (amidated) [...] Read more.
Peptidylglycine alpha-amidating monooxygenase (PAM) is the only enzyme known to catalyze C-terminal amidation, a final post-translational modification step essential for the biological activity of over 70 bioactive peptides, including adrenomedullin (ADM), calcitonin gene-related peptide (CGRP), amylin, neuropeptide Y (NPY), and others. Bioactive (amidated) peptide hormones play crucial roles in various physiological processes and have been extensively explored as therapeutic compounds in clinical and preclinical research. However, their therapeutic viability is limited due to their short half-life and, in most cases, the need for prolonged infusion to maintain effective concentrations. PAM itself has also been considered as a therapeutic compound aiming to increase the level of amidated peptide hormones; however, similarly to peptide hormones, PAM’s rapid degradation limits its utility. Here, we present a strategy to enhance PAM stability and bioavailability through PEGylation, significantly extending the enzyme’s half-life in circulation assessed in healthy rats. Furthermore, single subcutaneous (s.c.), intramuscular (i.m.), or intraperitoneal (i.p.) administration of PEGylated PAM resulted in a sustained increase in circulating amidating activity, with peak activity observed at 12–24 h post-bolus administration. Notably, amidating activity remained significantly elevated above baseline levels for up to seven days post-administration, with no observable adverse effects. These findings highlight PEGylated PAM’s potential as a viable therapeutic compound. Full article
Show Figures

Graphical abstract

21 pages, 1736 KiB  
Article
Synthesis and Antifungal Activity of Fmoc-Protected 1,2,4-Triazolyl-α-Amino Acids and Their Dipeptides Against Aspergillus Species
by Tatevik Sargsyan, Lala Stepanyan, Henrik Panosyan, Heghine Hakobyan, Monika Israyelyan, Avetis Tsaturyan, Nelli Hovhannisyan, Caterina Vicidomini, Anna Mkrtchyan, Ashot Saghyan and Giovanni N. Roviello
Biomolecules 2025, 15(1), 61; https://doi.org/10.3390/biom15010061 - 4 Jan 2025
Cited by 3 | Viewed by 2400
Abstract
In recent years, fungal infections have emerged as a significant health concern across veterinary species, especially in livestock such as cattle, where fungal diseases can result in considerable economic losses, as well as in humans. In particular, Aspergillus species, notably Aspergillus flavus and [...] Read more.
In recent years, fungal infections have emerged as a significant health concern across veterinary species, especially in livestock such as cattle, where fungal diseases can result in considerable economic losses, as well as in humans. In particular, Aspergillus species, notably Aspergillus flavus and Aspergillus versicolor, are opportunistic pathogens that pose a threat to both animals and humans. This study focuses on the synthesis and antifungal evaluation of novel 9-fluorenylmethoxycarbonyl (Fmoc)-protected 1,2,4-triazolyl-α-amino acids and their dipeptides, designed to combat fungal pathogens. More in detail, we evaluated their antifungal activity against various species, including Aspergillus versicolor (ATCC 12134) and Aspergillus flavus (ATCC 10567). The results indicated that dipeptide 7a exhibited promising antifungal activity against Aspergillus versicolor with an IC50 value of 169.94 µM, demonstrating greater potency than fluconazole, a standard treatment for fungal infections, which showed an IC50 of 254.01 µM. Notably, dipeptide 7a showed slightly enhanced antifungal efficacy compared to fluconazole also in Aspergillus flavus (IC50 176.69 µM vs. 184.64 µM), suggesting that this dipeptide might be more potent even against this strain. Remarkably, 3a and 7a are also more potent than fluconazole against A. candidus 10711. On the other hand, the protected amino acid 3a demonstrated consistent inhibition across all tested Aspergillus strains, but with an IC50 value of 267.86 µM for Aspergillus flavus, it was less potent than fluconazole (IC50 184.64 µM), still showing some potential as a good antifungal molecule. Overall, our findings indicate that the synthesized 1,2,4-triazolyl derivatives 3a and 7a hold significant promise as potential antifungal agents in treating Aspergillus-induced diseases in cattle, as well as for broader applications in human health. Our mechanistic studies based on molecular docking revealed that compounds 3a and 7a bind to the same region of the sterol 14-α demethylase as fluconazole. Given the rising concerns about antifungal resistance, these amino acid derivatives, with their unique bioactive structures, could serve as a novel class of therapeutic agents. Further research into their in vivo efficacy and safety profiles is warranted to fully realize their potential as antifungal drugs in clinical and agricultural settings. Full article
Show Figures

Figure 1

13 pages, 1846 KiB  
Article
Enhancing Selective Antimicrobial and Antibiofilm Activities of Melittin through 6-Aminohexanoic Acid Substitution
by Naveenkumar Radhakrishnan, Sukumar Dinesh Kumar, Song-Yub Shin and Sungtae Yang
Biomolecules 2024, 14(6), 699; https://doi.org/10.3390/biom14060699 - 14 Jun 2024
Cited by 1 | Viewed by 1378
Abstract
Leucine residues are commonly found in the hydrophobic face of antimicrobial peptides (AMPs) and are crucial for membrane permeabilization, leading to the cell death of invading pathogens. Melittin, which contains four leucine residues, demonstrates broad-spectrum antimicrobial properties but also significant cytotoxicity against mammalian [...] Read more.
Leucine residues are commonly found in the hydrophobic face of antimicrobial peptides (AMPs) and are crucial for membrane permeabilization, leading to the cell death of invading pathogens. Melittin, which contains four leucine residues, demonstrates broad-spectrum antimicrobial properties but also significant cytotoxicity against mammalian cells. To enhance the cell selectivity of melittin, this study synthesized five analogs by replacing leucine with its structural isomer, 6-aminohexanoic acid. Among these analogs, Mel-LX3 exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria. Importantly, Mel-LX3 displayed significantly reduced hemolytic and cytotoxic effects compared to melittin. Mechanistic studies, including membrane depolarization, SYTOX green uptake, FACScan analysis, and inner/outer membrane permeation assays, demonstrated that Mel-LX3 effectively permeabilized bacterial membranes similar to melittin. Notably, Mel-LX3 showed robust antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Furthermore, Mel-LX3 effectively inhibited biofilm formation and eradicated existing biofilms of MDRPA. With its improved selective antimicrobial and antibiofilm activities, Mel-LX3 emerges as a promising candidate for the development of novel antimicrobial agents. We propose that the substitution of leucine with 6-aminohexanoic acid in AMPs represents a significant strategy for combating resistant bacteria. Full article
Show Figures

Figure 1

12 pages, 2922 KiB  
Article
A Novel Dimeric Short Peptide Derived from α-Defensin-Related Rattusin with Improved Antimicrobial and DNA-Binding Activities
by Gwansik Park, Hyosuk Yun, Hye Jung Min and Chul Won Lee
Biomolecules 2024, 14(6), 659; https://doi.org/10.3390/biom14060659 - 5 Jun 2024
Viewed by 1442
Abstract
Rattusin, an α-defensin-related antimicrobial peptide isolated from the small intestine of rats, has been previously characterized through NMR spectroscopy to elucidate its three-dimensional structure, revealing a C2 homodimeric scaffold stabilized by five disulfide bonds. This study aimed to identify the functional region of [...] Read more.
Rattusin, an α-defensin-related antimicrobial peptide isolated from the small intestine of rats, has been previously characterized through NMR spectroscopy to elucidate its three-dimensional structure, revealing a C2 homodimeric scaffold stabilized by five disulfide bonds. This study aimed to identify the functional region of rattusin by designing and synthesizing various short analogs, subsequently leading to the development of novel peptide-based antibiotics. The analogs, designated as F1, F2, F3, and F4, were constructed based on the three-dimensional configuration of rattusin, among which F2 is the shortest peptide and exhibited superior antimicrobial efficacy compared to the wild-type peptide. The central cysteine residue of F2 prompted an investigation into its potential to form a dimer at neutral pH, which is critical for its antimicrobial function. This activity was abolished upon the substitution of the cysteine residue with serine, indicating the necessity of dimerization for antimicrobial action. Further, we synthesized β-hairpin-like analogs, both parallel and antiparallel, based on the dimeric structure of F2, which maintained comparable antimicrobial potency. In contrast to rattusin, which acts by disrupting bacterial membranes, the F2 dimer binds directly to DNA, as evidenced by fluorescence assays and DNA retardation experiments. Importantly, F2 exhibited negligible cytotoxicity up to 515 μg/mL, assessed via hemolysis and MTT assays, underscoring its potential as a lead compound for novel peptide-based antibiotic development. Full article
Show Figures

Figure 1

21 pages, 3833 KiB  
Article
Generation of Rapid and High-Quality Serum by Recombinant Prothrombin Activator Ecarin (RAPClot™)
by Kong-Nan Zhao, Goce Dimeski, Paul Masci, Lambro Johnson, Jingjing Wang, John de Jersey, Michael Grant and Martin F. Lavin
Biomolecules 2024, 14(6), 645; https://doi.org/10.3390/biom14060645 - 30 May 2024
Cited by 1 | Viewed by 1167
Abstract
We recently reported the potential application of recombinant prothrombin activator ecarin (RAPClot™) in blood diagnostics. In a new study, we describe RAPClot™ as an additive to develop a novel blood collection prototype tube that produces the highest quality serum for accurate biochemical analyte [...] Read more.
We recently reported the potential application of recombinant prothrombin activator ecarin (RAPClot™) in blood diagnostics. In a new study, we describe RAPClot™ as an additive to develop a novel blood collection prototype tube that produces the highest quality serum for accurate biochemical analyte determination. The drying process of the RAPClot™ tube generated minimal effect on the enzymatic activity of the prothrombin activator. According to the bioassays of thrombin activity and plasma clotting, γ-radiation (>25 kGy) resulted in a 30–40% loss of the enzymatic activity of the RAPClot™ tubes. However, a visual blood clotting assay revealed that the γ-radiation-sterilized RAPClot™ tubes showed a high capacity for clotting high-dose heparinized blood (8 U/mL) within 5 min. This was confirmed using Thrombelastography (TEG), indicating full clotting efficiency under anticoagulant conditions. The storage of the RAPClot™ tubes at room temperature (RT) for greater than 12 months resulted in the retention of efficient and effective clotting activity for heparinized blood in 342 s. Furthermore, the enzymatic activity of the RAPClot™ tubes sterilized with an electron-beam (EB) was significantly greater than that with γ-radiation. The EB-sterilized RAPClot™ tubes stored at RT for 251 days retained over 70% enzyme activity and clotted the heparinized blood in 340 s after 682 days. Preliminary clinical studies revealed in the two trials that 5 common analytes (K, Glu, lactate dehydrogenase (LD), Fe, and Phos) or 33 analytes determined in the second study in the γ-sterilized RAPClot™ tubes were similar to those in commercial tubes. In conclusion, the findings indicate that the novel RAPClot™ blood collection prototype tube has a significant advantage over current serum or lithium heparin plasma tubes for routine use in measuring biochemical analytes, confirming a promising application of RAPClot™ in clinical medicine. Full article
Show Figures

Figure 1

12 pages, 1148 KiB  
Article
Synthesis of the Antimicrobial Peptide Murepavadin Using Novel Coupling Agents
by Júlia García-Gros, Yolanda Cajal, Ana Maria Marqués and Francesc Rabanal
Biomolecules 2024, 14(5), 526; https://doi.org/10.3390/biom14050526 - 27 Apr 2024
Cited by 2 | Viewed by 3115
Abstract
The problem of antimicrobial resistance is becoming a daunting challenge for human society and healthcare systems around the world. Hence, there is a constant need to develop new antibiotics to fight resistant bacteria, among other important social and economic measures. In this regard, [...] Read more.
The problem of antimicrobial resistance is becoming a daunting challenge for human society and healthcare systems around the world. Hence, there is a constant need to develop new antibiotics to fight resistant bacteria, among other important social and economic measures. In this regard, murepavadin is a cyclic antibacterial peptide in development. The synthesis of murepavadin was undertaken in order to optimize the preparative protocol and scale-up, in particular, the use of new activation reagents. In our hands, classical approaches using carbodiimide/hydroxybenzotriazole rendered low yields. The use of novel carbodiimide and reagents based on OxymaPure® and Oxy-B is discussed together with the proper use of chromatographic conditions for the adequate characterization of peptide crudes. Higher yields and purities were obtained. Finally, the antimicrobial activity of different synthetic batches was tested in three Pseudomonas aeruginosa strains, including highly resistant ones. All murepavadin batches yielded the same highly active MIC values and proved that the chiral integrity of the molecule was preserved throughout the whole synthetic procedure. Full article
Show Figures

Figure 1

12 pages, 2607 KiB  
Article
Analysis of Self-Assembled Low- and High-Molecular-Weight Poly-L-Lysine–Ce6 Conjugate-Based Nanoparticles
by Minho Seo, Kyeong-Ju Lee, Bison Seo, Jun-Hyuck Lee, Jae-Hyeon Lee, Dong-Wook Shin and Jooho Park
Biomolecules 2024, 14(4), 431; https://doi.org/10.3390/biom14040431 - 2 Apr 2024
Cited by 1 | Viewed by 2110
Abstract
In cancer therapy, photodynamic therapy (PDT) has attracted significant attention due to its high potential for tumor-selective treatment. However, PDT agents often exhibit poor physicochemical properties, including solubility, necessitating the development of nanoformulations. In this study, we developed two cationic peptide-based self-assembled nanomaterials [...] Read more.
In cancer therapy, photodynamic therapy (PDT) has attracted significant attention due to its high potential for tumor-selective treatment. However, PDT agents often exhibit poor physicochemical properties, including solubility, necessitating the development of nanoformulations. In this study, we developed two cationic peptide-based self-assembled nanomaterials by using a PDT agent, chlorin e6 (Ce6). To manufacture biocompatible nanoparticles based on peptides, we used the cationic poly-L-lysine peptide, which is rich in primary amines. We prepared low- and high-molecular-weight poly-L-lysine, and then evaluated the formation and performance of nanoparticles after chemical conjugation with Ce6. The results showed that both molecules formed self-assembled nanoparticles by themselves in saline. Interestingly, the high-molecular-weight poly-L-lysine and Ce6 conjugates (HPLCe6) exhibited better self-assembly and PDT performance than low-molecular-weight poly-L-lysine and Ce6 conjugates (LPLCe6). Moreover, the HPLCe6 conjugates showed superior cellular uptake and exhibited stronger cytotoxicity in cell toxicity experiments. Therefore, it is functionally beneficial to use high-molecular-weight poly-L-lysine in the manufacturing of poly-L-lysine-based self-assembling biocompatible PDT nanoconjugates. Full article
Show Figures

Figure 1

23 pages, 4768 KiB  
Article
The Adipokinetic Hormone (AKH) and the Adipokinetic Hormone/Corazonin-Related Peptide (ACP) Signalling Systems of the Yellow Fever Mosquito Aedes aegypti: Chemical Models of Binding
by Graham E. Jackson, Marc-Antoine Sani, Heather G. Marco, Frances Separovic and Gerd Gäde
Biomolecules 2024, 14(3), 313; https://doi.org/10.3390/biom14030313 - 6 Mar 2024
Cited by 2 | Viewed by 1992
Abstract
Neuropeptides are the main regulators of physiological, developmental, and behavioural processes in insects. Three insect neuropeptide systems, the adipokinetic hormone (AKH), corazonin (Crz), and adipokinetic hormone/corazonin-related peptide (ACP), and their cognate receptors, are related to the vertebrate gonadotropin (GnRH) system and form the [...] Read more.
Neuropeptides are the main regulators of physiological, developmental, and behavioural processes in insects. Three insect neuropeptide systems, the adipokinetic hormone (AKH), corazonin (Crz), and adipokinetic hormone/corazonin-related peptide (ACP), and their cognate receptors, are related to the vertebrate gonadotropin (GnRH) system and form the GnRH superfamily of peptides. In the current study, the two signalling systems, AKH and ACP, of the yellow fever mosquito, Aedes aegypti, were comparatively investigated with respect to ligand binding to their respective receptors. To achieve this, the solution structure of the hormones was determined by nuclear magnetic resonance distance restraint methodology. Atomic-scale models of the two G protein-coupled receptors were constructed with the help of homology modelling. Thereafter, the binding sites of the receptors were identified by blind docking of the ligands to the receptors, and models were derived for each hormone system showing how the ligands are bound to their receptors. Lastly, the two models were validated by comparing the computational results with experimentally derived data available from the literature. This mostly resulted in an acceptable agreement, proving the models to be largely correct and usable. The identification of an antagonist versus a true agonist may, however, require additional testing. The computational data also explains the exclusivity of the two systems that bind only the cognate ligand. This study forms the basis for further drug discovery studies. Full article
Show Figures

Figure 1

12 pages, 1573 KiB  
Communication
Preventive Effects of Collagen-Derived Dipeptide Prolyl-Hydroxyproline against Dexamethasone-Induced Muscle Atrophy in Mouse C2C12 Skeletal Myotubes
by Yoshifumi Kimira, Konosuke Osawa, Yoshihiro Osawa and Hiroshi Mano
Biomolecules 2023, 13(11), 1617; https://doi.org/10.3390/biom13111617 - 5 Nov 2023
Cited by 5 | Viewed by 3089
Abstract
Glucocorticoids, commonly used to manage inflammatory diseases, can induce muscle atrophy by accelerating the breakdown of muscle proteins. This research delves into the influence of Prolyl-hydroxyproline (Pro-Hyp), a collagen-derived peptide, on muscle atrophy induced with dexamethasone (DEX), a synthetic glucocorticoid, in mouse C2C12 [...] Read more.
Glucocorticoids, commonly used to manage inflammatory diseases, can induce muscle atrophy by accelerating the breakdown of muscle proteins. This research delves into the influence of Prolyl-hydroxyproline (Pro-Hyp), a collagen-derived peptide, on muscle atrophy induced with dexamethasone (DEX), a synthetic glucocorticoid, in mouse C2C12 skeletal myotubes. Exposure to DEX (10 μM) for 6 days resulted in a decrease in myotube diameter, along with elevated mRNA and protein levels of two muscle-atrophy-related ubiquitin ligases, muscle atrophy F-box (MAFbx, also known as atrogin-1) and muscle ring finger 1 (MuRF-1). Remarkably, treatment with 0.1 mM of Pro-Hyp mitigated the reduction in myotube thickness caused by DEX, while promoting the phosphorylation of Akt, mammalian target of rapamycin (mTOR), and forkhead box O3a (Foxo3a). This led to the inhibition of the upregulation of the ubiquitin ligases atrogin-1 and MuRF-1. These findings indicate the potential significance of Pro-Hyp as a promising therapeutic target for countering DEX-induced muscle atrophy. Full article
Show Figures

Figure 1

18 pages, 4318 KiB  
Article
Revisiting Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients with Glioblastoma—Proteomic Alteration and Comparison Analysis with the Standard-of-Care Chemoirradiation
by Andra V. Krauze, Yingdong Zhao, Ming-Chung Li, Joanna Shih, Will Jiang, Erdal Tasci, Theresa Cooley Zgela, Mary Sproull, Megan Mackey, Uma Shankavaram, Philip Tofilon and Kevin Camphausen
Biomolecules 2023, 13(10), 1499; https://doi.org/10.3390/biom13101499 - 10 Oct 2023
Cited by 6 | Viewed by 2855
Abstract
Background: Glioblastoma (GBM) is the most common brain tumor with an overall survival (OS) of less than 30% at two years. Valproic acid (VPA) demonstrated survival benefits documented in retrospective and prospective trials, when used in combination with chemo-radiotherapy (CRT). Purpose: The primary [...] Read more.
Background: Glioblastoma (GBM) is the most common brain tumor with an overall survival (OS) of less than 30% at two years. Valproic acid (VPA) demonstrated survival benefits documented in retrospective and prospective trials, when used in combination with chemo-radiotherapy (CRT). Purpose: The primary goal of this study was to examine if the differential alteration in proteomic expression pre vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA as compared to standard-of-care CRT. The second goal was to explore the associations between the proteomic alterations in response to VPA/RT/TMZ correlated to patient outcomes. The third goal was to use the proteomic profile to determine the mechanism of action of VPA in this setting. Materials and Methods: Serum obtained pre- and post-CRT was analyzed using an aptamer-based SOMAScan® proteomic assay. Twenty-nine patients received CRT plus VPA, and 53 patients received CRT alone. Clinical data were obtained via a database and chart review. Tests for differences in protein expression changes between radiation therapy (RT) with or without VPA were conducted for individual proteins using two-sided t-tests, considering p-values of <0.05 as significant. Adjustment for age, sex, and other clinical covariates and hierarchical clustering of significant differentially expressed proteins was carried out, and Gene Set Enrichment analyses were performed using the Hallmark gene sets. Univariate Cox proportional hazards models were used to test the individual protein expression changes for an association with survival. The lasso Cox regression method and 10-fold cross-validation were employed to test the combinations of expression changes of proteins that could predict survival. Predictiveness curves were plotted for significant proteins for VPA response (p-value < 0.005) to show the survival probability vs. the protein expression percentiles. Results: A total of 124 proteins were identified pre- vs. post-CRT that were differentially expressed between the cohorts who received CRT plus VPA and those who received CRT alone. Clinical factors did not confound the results, and distinct proteomic clustering in the VPA-treated population was identified. Time-dependent ROC curves for OS and PFS for landmark times of 20 months and 6 months, respectively, revealed AUC of 0.531, 0.756, 0.774 for OS and 0.535, 0.723, 0.806 for PFS for protein expression, clinical factors, and the combination of protein expression and clinical factors, respectively, indicating that the proteome can provide additional survival risk discrimination to that already provided by the standard clinical factors with a greater impact on PFS. Several proteins of interest were identified. Alterations in GALNT14 (increased) and CCL17 (decreased) (p = 0.003 and 0.003, respectively, FDR 0.198 for both) were associated with an improvement in both OS and PFS. The pre-CRT protein expression revealed 480 proteins predictive for OS and 212 for PFS (p < 0.05), of which 112 overlapped between OS and PFS. However, FDR-adjusted p values were high, with OS (the smallest p value of 0.586) and PFS (the smallest p value of 0.998). The protein PLCD3 had the lowest p-value (p = 0.002 and 0.0004 for OS and PFS, respectively), and its elevation prior to CRT predicted superior OS and PFS with VPA administration. Cancer hallmark genesets associated with proteomic alteration observed with the administration of VPA aligned with known signal transduction pathways of this agent in malignancy and non-malignancy settings, and GBM signaling, and included epithelial–mesenchymal transition, hedgehog signaling, Il6/JAK/STAT3, coagulation, NOTCH, apical junction, xenobiotic metabolism, and complement signaling. Conclusions: Differential alteration in proteomic expression pre- vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA. Using pre- vs. post-data, prognostic proteins emerged in the analysis. Using pre-CRT data, potentially predictive proteins were identified. The protein signals and hallmark gene sets associated with the alteration in the proteome identified between patients who received VPA and those who did not, align with known biological mechanisms of action of VPA and may allow for the identification of novel biomarkers associated with outcomes that can help advance the study of VPA in future prospective trials. Full article
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 6659 KiB  
Review
Advancements in the Application of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs)
by Sang-Woo Han and Hyung-Sik Won
Biomolecules 2024, 14(4), 479; https://doi.org/10.3390/biom14040479 - 15 Apr 2024
Cited by 3 | Viewed by 4678
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a significant potential for novel therapeutic applications because of their bioactive properties, stability, and specificity. RiPPs are synthesized on ribosomes, followed by intricate post-translational modifications (PTMs), crucial for their diverse structures and functions. PTMs, such [...] Read more.
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a significant potential for novel therapeutic applications because of their bioactive properties, stability, and specificity. RiPPs are synthesized on ribosomes, followed by intricate post-translational modifications (PTMs), crucial for their diverse structures and functions. PTMs, such as cyclization, methylation, and proteolysis, play crucial roles in enhancing RiPP stability and bioactivity. Advances in synthetic biology and bioinformatics have significantly advanced the field, introducing new methods for RiPP production and engineering. These methods encompass strategies for heterologous expression, genetic refactoring, and exploiting the substrate tolerance of tailoring enzymes to create novel RiPP analogs with improved or entirely new functions. Furthermore, the introduction and implementation of cutting-edge screening methods, including mRNA display, surface display, and two-hybrid systems, have expedited the identification of RiPPs with significant pharmaceutical potential. This comprehensive review not only discusses the current advancements in RiPP research but also the promising opportunities that leveraging these bioactive peptides for therapeutic applications presents, illustrating the synergy between traditional biochemistry and contemporary synthetic biology and genetic engineering approaches. Full article
Show Figures

Figure 1

29 pages, 3906 KiB  
Review
LL-37: Structures, Antimicrobial Activity, and Influence on Amyloid-Related Diseases
by Surajit Bhattacharjya, Zhizhuo Zhang and Ayyalusamy Ramamoorthy
Biomolecules 2024, 14(3), 320; https://doi.org/10.3390/biom14030320 - 8 Mar 2024
Cited by 21 | Viewed by 5475
Abstract
Antimicrobial peptides (AMPs), as well as host defense peptides (HDPs), constitute the first line of defense as part of the innate immune system. Humans are known to express antimicrobial precursor proteins, which are further processed to generate AMPs, including several types of α/β [...] Read more.
Antimicrobial peptides (AMPs), as well as host defense peptides (HDPs), constitute the first line of defense as part of the innate immune system. Humans are known to express antimicrobial precursor proteins, which are further processed to generate AMPs, including several types of α/β defensins, histatins, and cathelicidin-derived AMPs like LL37. The broad-spectrum activity of AMPs is crucial to defend against infections caused by pathogenic bacteria, viruses, fungi, and parasites. The emergence of multi-drug resistant pathogenic bacteria is of global concern for public health. The prospects of targeting antibiotic-resistant strains of bacteria with AMPs are of high significance for developing new generations of antimicrobial agents. The 37-residue long LL37, the only cathelicidin family of AMP in humans, has been the major focus for the past few decades of research. The host defense activity of LL37 is likely underscored by its expression throughout the body, spanning from the epithelial cells of various organs—testis, skin, respiratory tract, and gastrointestinal tract—to immune cells. Remarkably, apart from canonical direct killing of pathogenic organisms, LL37 exerts several other host defense activities, including inflammatory response modulation, chemo-attraction, and wound healing and closure at the infected sites. In addition, LL37 and its derived peptides are bestowed with anti-cancer and anti-amyloidogenic properties. In this review article, we aim to develop integrative, mechanistic insight into LL37 and its derived peptides, based on the known biophysical, structural, and functional studies in recent years. We believe that this review will pave the way for future research on the structures, biochemical and biophysical properties, and design of novel LL37-based molecules. Full article
Show Figures

Figure 1

Back to TopTop