Special Issue "Targeting Transcription Factors and Oncogenic Proteins for Cancer Therapy"

A special issue of Biomedicines (ISSN 2227-9059).

Deadline for manuscript submissions: 15 July 2020.

Special Issue Editor

Dr. Gautam Sethi
Website1 Website2
Guest Editor
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Building MD3, #04-01, 16 Medical Drive, Singapore 117600, Singapore
Interests: cancer pharmacology; cell signaling; transcription factors; natural products; preclinical models
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

The activation of oncogenic transcription factors (NF-κB, STAT3, STAT5, AP-1, etc.) and proteins (Ras, Raf, Src, etc.) plays an important role in tumorigenesis. The mechanisms(s) regulating the activation of these transcription factors and proteins are complex and constantly evolving. The current issue will explore in detail the role of oncogenic transcription factors/proteins in carcinogenesis and highlight novel pharmacological strategies that can be evolved to target them and subsequently mitigate the processes of abnormal proliferation and survival of tumor cells.

Dr. Gautam Sethi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cancer;
  • transcription factors;
  • apoptosis;
  • oncogenes;
  • natural agents

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

Open AccessReview
Assessment of the Antitumor Potential of Umbelliprenin, a Naturally Occurring Sesquiterpene Coumarin
Biomedicines 2020, 8(5), 126; https://doi.org/10.3390/biomedicines8050126 - 18 May 2020
Abstract
Cancer is one of the greatest causes of mortality worldwide. The prevalence rates of different types of cancer is increasing around the world as well. Limitations in chemotherapy and radiotherapy, owing to multiple side effects including cytotoxic effects of antitumor compounds on normal [...] Read more.
Cancer is one of the greatest causes of mortality worldwide. The prevalence rates of different types of cancer is increasing around the world as well. Limitations in chemotherapy and radiotherapy, owing to multiple side effects including cytotoxic effects of antitumor compounds on normal cells as well as the development of resistance to these treatment options in patients, create a serious threat to successful treatment of cancer. The use of natural compounds to prevent and treat cancers has been found to be quite effective, with fewer adverse effects found in patients. Umbelliprenin (UMB) is a naturally occurring sesquiterpene compound found in Ferula species and recently in Artemisia absinthium. Many studies have highlighted the antitumor potential of UMB in different cancer cell lines as well as in animal models. UMB exerts its anticancer actions by regulating extrinsic and intrinsic apoptotic pathways; causing inhibition of the cell cycle at the G0/G1 phase; and attenuating migration and invasion by modulating the Wnt signaling, NF-ĸB, TGFβ, and Fox3 signaling pathways. UMB also affects the key hallmarks of tumor cells by attenuating tumor growth, angiogenesis, and metastasis. This review provides an insight into the role of UMB as a potential antitumor drug for different malignancies and highlights the signaling cascades affected by UMB treatment in diverse tumor cell lines and preclinical models. Full article
Show Figures

Graphical abstract

Open AccessReview
Nobiletin in Cancer Therapy: How This Plant Derived-Natural Compound Targets Various Oncogene and Onco-Suppressor Pathways
Biomedicines 2020, 8(5), 110; https://doi.org/10.3390/biomedicines8050110 - 05 May 2020
Abstract
Cancer therapy is a growing field, and annually, a high number of research is performed to develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are able to acquire resistance to conventional drugs. Natural chemicals can be considered [...] Read more.
Cancer therapy is a growing field, and annually, a high number of research is performed to develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are able to acquire resistance to conventional drugs. Natural chemicals can be considered as promising candidates in the field of cancer therapy due to their multiple-targeting capability. The nobiletin (NOB) is a ubiquitous flavone isolated from Citrus fruits. The NOB has a variety of pharmacological activities, such as antidiabetes, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective. Among them, the antitumor activity of NOB has been under attention over recent years. In this review, we comprehensively describe the efficacy of NOB in cancer therapy. NOB induces apoptosis and cell cycle arrest in cancer cells. It can suppress migration and invasion of cancer cells via the inhibition of epithelial-to-mesenchymal transition (EMT) and EMT-related factors such as TGF-β, ZEB, Slug, and Snail. Besides, NOB inhibits oncogene factors such as STAT3, NF-κB, Akt, PI3K, Wnt, and so on. Noteworthy, onco-suppressor factors such as microRNA-7 and -200b undergo upregulation by NOB in cancer therapy. These onco-suppressor and oncogene pathways and mechanisms are discussed in this review. Full article
Show Figures

Figure 1

Open AccessReview
Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells
Biomedicines 2020, 8(5), 103; https://doi.org/10.3390/biomedicines8050103 - 30 Apr 2020
Abstract
Garcinol, a polyisoprenylated benzophenone, is the medicinal component obtained from fruits and leaves of Garcinia indica (G. indica) and has traditionally been extensively used for its antioxidant and anti-inflammatory properties. In addition, it has been also been experimentally illustrated to elicit [...] Read more.
Garcinol, a polyisoprenylated benzophenone, is the medicinal component obtained from fruits and leaves of Garcinia indica (G. indica) and has traditionally been extensively used for its antioxidant and anti-inflammatory properties. In addition, it has been also been experimentally illustrated to elicit anti-cancer properties. Several in vitro and in vivo studies have illustrated the potential therapeutic efficiency of garcinol in management of different malignancies. It mainly acts as an inhibitor of cellular processes via regulation of transcription factors NF-κB and JAK/STAT3 in tumor cells and have been demonstrated to effectively inhibit growth of malignant cell population. Numerous studies have highlighted the anti-neoplastic potential of garcinol in different oncological transformations including colon cancer, breast cancer, prostate cancer, head and neck cancer, hepatocellular carcinoma, etc. However, use of garcinol is still in its pre-clinical stage and this is mainly attributed to the limitations of conclusive evaluation of pharmacological parameters. This necessitates evaluation of garcinol pharmacokinetics to precisely identify an appropriate dose and route of administration, tolerability, and potency under physiological conditions along with characterization of a therapeutic index. Hence, the research is presently ongoing in the dimension of exploring the precise metabolic mechanism of garcinol. Despite various lacunae, garcinol has presented with promising anti-cancer effects. Hence, this review is motivated by the constantly emerging and promising positive anti-cancerous effects of garcinol. This review is the first effort to summarize the mechanism of action of garcinol in modulation of anti-cancer effect via regulation of different cellular processes. Full article
Show Figures

Figure 1

Back to TopTop