Batteries: 10th Anniversary

A special issue of Batteries (ISSN 2313-0105).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 899

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical and Materials Engineering, Concordia University, Montréal, QC H3G 1M8, Canada
Interests: electrochemistry; rechargeable batteries; electrochromic; carbon
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

To celebrate the 10th anniversary of Batteries, we are pleased to announce a Special Issue dedicated to the latest advancements in energy storage technologies. Over the years, Batteries has been at the forefront of publishing cutting-edge research on battery materials, technologies, and applications. This Special Issue aims to highlight recent breakthroughs, emerging trends, and future directions in the field of energy storage.

We invite researchers to contribute original research articles, reviews, and perspectives that address key challenges and opportunities in battery science and technology. Topics of interest include, but are not limited to, the following:

  • Advanced battery materials and interfaces: novel electrode materials, electrolytes, and separators for lithium-ion, sodium-ion, and beyond.
  • Next-generation batteries: solid-state batteries, lithium–sulfur batteries, metal–air batteries, flow batteries, supercapacitors, and other emerging technologies.
  • Battery safety, diagnostics, and management: thermal management, failure analysis, aging, degradation, and state-of-health monitoring.
  • Batteries systems and applications: high-energy-density battery packs, fast-charging technologies, battery management systems, electric vehicles, grid storage, portable electronics, and renewable energy integration.
  • Battery manufacturing, recycling, and sustainability: sustainable production methods, recycling processes, and lifecycle analysis (LCA) and eco-design strategies.

This Special Issue will provide a platform for researchers to share their insights and contribute to the ongoing evolution of battery technologies. We look forward to receiving your submissions and celebrating the remarkable progress in this dynamic field.

Prof. Dr. Karim Zaghib
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Batteries is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lithium-ion batteries
  • solid-state batteries
  • next-generation batteries
  • sodium-ion batteries
  • lithium–sulfur batteries
  • metal–air batteries
  • supercapacitors
  • electrode materials
  • solid electrolytes
  • battery safety
  • battery diagnostics and prognostics
  • battery modeling and simulation
  • battery degradation mechanisms
  • battery lifespan optimization
  • battery management systems
  • thermal management systems
  • advanced characterization techniques
  • AI and machine learning in battery research
  • high-energy-density batteries
  • renewable energy integration
  • electric vehicle batteries
  • grid-scale energy storage
  • low-cost battery technologies
  • fast charging technologies
  • sustainable battery production
  • recycling of critical materials
  • battery recycling and second-life applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 13514 KiB  
Article
Comparative Analysis via CFD Simulation on the Impact of Graphite Anode Morphologies on the Discharge of a Lithium-Ion Battery
by Alessio Lombardo Pontillo, Agnese Marcato, Daniele Versaci, Daniele Marchisio and Gianluca Boccardo
Batteries 2025, 11(7), 252; https://doi.org/10.3390/batteries11070252 - 2 Jul 2025
Abstract
The morphology of electrode materials plays a crucial role in determining the performance of lithium-ion batteries. Traditional computational models often simplify graphite flakes as uniformly sized spheres, which limits their predictive accuracy. In this study, we present a computational workflow that overcomes these [...] Read more.
The morphology of electrode materials plays a crucial role in determining the performance of lithium-ion batteries. Traditional computational models often simplify graphite flakes as uniformly sized spheres, which limits their predictive accuracy. In this study, we present a computational workflow that overcomes these limitations by incorporating a more realistic representation of graphite morphologies. This workflow is designed to be flexible and reproducible, enabling efficient evaluation of electrochemical performance across diverse material structures. By exploring different graphite morphologies, our approach accelerates the optimization of material preparation techniques and processing conditions. Our findings reveal that incorporating greater morphological complexity leads to significant deviations from classical model predictions. Instead, our refined model offers a more accurate representation of battery discharge behavior, closely aligning with experimental data. This improvement underscores the importance of detailed morphological descriptions in advancing battery design and performance assessments. To promote accessibility and reproducibility, we provide the developed code for seamless integration with the COMSOL API, allowing researchers to implement and adapt it easily. This computational framework serves as a valuable tool for investigating the impact of graphite morphology on battery performance, bridging the gap between theoretical modeling and experimental validation to enhance lithium-ion battery technology. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

18 pages, 1972 KiB  
Article
Lithium Growth on Alloying Substrates and Effect on Volumetric Expansion
by Laura C. Merrill, Robert L. Craig, Damion P. Cummings and Julia I. Deitz
Batteries 2025, 11(7), 249; https://doi.org/10.3390/batteries11070249 - 29 Jun 2025
Viewed by 63
Abstract
The widespread implementation of next-generation Li metal anodes is limited, in part, due to the formation of dendritic and/or mossy electrodeposits during cycling. These morphologies can lead to battery failure due to the formation of short circuits and significant volumetric expansion at the [...] Read more.
The widespread implementation of next-generation Li metal anodes is limited, in part, due to the formation of dendritic and/or mossy electrodeposits during cycling. These morphologies can lead to battery failure due to the formation of short circuits and significant volumetric expansion at the anode. One strategy to control the electrodeposition of Li metal is to use lithiophilic materials at the anode. Here, we evaluate the impact of Ag and Au on the early stages of Li metal electrodeposition and cycling. The alloying substrates decrease the voltage for Li reduction and improve Li wetting/adhesion. We probe volumetric expansion directly through dilatometry measurements and find that the degree of volumetric expansion is less when lithium is cycled on an alloying substrate compared to a non-alloying substrate (Cu). Dilatometry experiments reveal that Au has the least amount of volumetric expansion and coin cell cycling experiments indicate that Ag yields more stable cycling compared to Au or Cu. The evaluation of in situ cross-sectional images of cycled coin cells shows that Ag has the lowest volumetric expansion in a coin cell format. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Figure 1

25 pages, 8273 KiB  
Article
Laser Printing of Silicon-Containing Anodes with Polyacrylic Acid
by Ulrich Rist and Wilhelm Pfleging
Batteries 2025, 11(5), 191; https://doi.org/10.3390/batteries11050191 - 14 May 2025
Viewed by 459
Abstract
To enhance the performance of state-of-the-art lithium-ion batteries, high-capacity silicon is increasingly introduced as active material for anodes. Furthermore, advanced batteries with new electrode architectures—so-called 3D architectures—can provide significantly enhanced electrochemical performance compared to state-of-the-art batteries. To facilitate and speed up the architectural [...] Read more.
To enhance the performance of state-of-the-art lithium-ion batteries, high-capacity silicon is increasingly introduced as active material for anodes. Furthermore, advanced batteries with new electrode architectures—so-called 3D architectures—can provide significantly enhanced electrochemical performance compared to state-of-the-art batteries. To facilitate and speed up the architectural development, the laser-induced forward transfer (LIFT) process was applied as a digital additive manufacturing method. As polyvinylidene fluoride (PVDF), the binder commonly used in the LIFT process, is not a suitable binder for silicon-containing electrodes due to its weak binding forces, polyacrylic acid (PAA) was introduced as a binder for use in printable electrode pastes. Since water as a solvent in such pastes evaporates quickly and the corresponding printing time would be too short, glycerol was added to the solvent mixture in different amounts. The silicon in the printed electrodes reaches a specific capacity of more than 3000 mAh·g1 for most of the printed anodes. To further improve the electrochemical performance of the printed electrodes, as well as the rheology of the slurries, two different conductive additives with different particle sizes were used. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

Back to TopTop