Emerging Materials and Technologies for Post-Lithium-Ion Batteries—2nd Edition

Special Issue Editor


E-Mail Website
Guest Editor
Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
Interests: electrochemistry and energy storage; nanostructured materials and their applications in the fields of rechargeable lithium batteries, supercapacitors, gas sensors and fuel cells
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Currently, the rechargeable lithium-ion battery is generally considered to be the best battery for EVs, as a compromise between the advantages and drawbacks among various traditional battery candidates (e.g., fuel cells, solar cells, lead-acid, Ni-Cd and Ni-MH batteries). However, the application of lithium-ion battery is limited owing to some practical challenges such as high cost (e.g., lithium and cobalt raw resources), low energy/power density for high rate application, and intrinsic safety risk using organic electrolyte. Therefore, it is crucial to develop novel materials and technologies beyond the lithium-ion batteries with low price, high energy/power density, and reliable safety.

In this Special Issue, potential topics include, but are not limited to:

  • Sodium ion batteries;
  • Lithium sulfur batteries;
  • Metal air batteries;
  • Solid state batteries;
  • Supercapacitors;
  • Fuel cells.

Dr. Hao Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Batteries is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sodium ion batteries
  • lithium sulfur batteries
  • metal air batteries
  • solid state batteries
  • supercapacitors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 15674 KiB  
Article
Binder-Free Fe-N-C-O Bifunctional Electrocatalyst in Nickel Foam for Aqueous Zinc–Air Batteries
by Jorge González-Morales, Jadra Mosa and Mario Aparicio
Batteries 2025, 11(4), 159; https://doi.org/10.3390/batteries11040159 - 17 Apr 2025
Viewed by 149
Abstract
The development of efficient, sustainable, and cost-effective catalysts is crucial for energy storage technologies, such as zinc–air batteries (ZABs). These batteries require bifunctional catalysts capable of efficiently and selectively catalyzing oxygen redox reactions. However, the high cost and low selectivity of conventional catalysts [...] Read more.
The development of efficient, sustainable, and cost-effective catalysts is crucial for energy storage technologies, such as zinc–air batteries (ZABs). These batteries require bifunctional catalysts capable of efficiently and selectively catalyzing oxygen redox reactions. However, the high cost and low selectivity of conventional catalysts hinder the large-scale integration of ZABs into the electric grid. This study presents binder-free Fe-based bifunctional electrocatalysts synthesized via a sol–gel method, followed by thermal treatment under ammonia flow. Supported on nickel foam, the catalyst exhibits enhanced activity for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), essential for ZAB operation. This work addresses two critical challenges in the development of ZABs: first, the replacement of costly cobalt or platinum-group-metal (PGM)-based catalysts with an efficient alternative; second, the achievement of prolonged battery performance under real conditions without passivation. Structural analysis confirms the integration of iron nitrides, oxides, and carbon, resulting in high conductivity and catalytic stability without relying on precious or cobalt-based metals. Electrochemical tests reveal that the catalyst calcined at 800 °C delivers superior performance, achieving a four-electron ORR mechanism and prolonged operational life compared to its 900 °C counterpart. Both catalysts outperform conventional Pt/C-RuO2 systems in stability and selective bifunctionality, offering a more sustainable and cost-effective alternative. The innovative combination of nitrogen, carbon, and iron compounds overcomes limitations associated with traditional materials, paving the way for scalable, high-performance applications in renewable energy storage. This work underscores the potential of transition metal-based catalysts in advancing the commercial viability of ZABs. Full article
Show Figures

Figure 1

15 pages, 5960 KiB  
Article
The Use of Cognate Cosolvent to Mediate Localized High-Concentration Electrolytes for High-Voltage and Long-Cycling Lithium-Metal Batteries
by Ying Hu, Dandan Wang, Qijie Yu, Ziyi He, Fengrui Deng, Hao Yan, Tinglu Song, Jin-Cheng Zheng and Yang Dai
Batteries 2025, 11(4), 156; https://doi.org/10.3390/batteries11040156 - 15 Apr 2025
Viewed by 256
Abstract
Localized high-concentration electrolytes (LHCEs) are promising systems for improving the high-voltage performance and interfacial stability of lithium-metal batteries (LMBs). Unfortunately, they are always challenged by liquid–liquid phase separation during solution preparation. Further investigation is always required when the prepared electrolyte has encountered liquid–liquid [...] Read more.
Localized high-concentration electrolytes (LHCEs) are promising systems for improving the high-voltage performance and interfacial stability of lithium-metal batteries (LMBs). Unfortunately, they are always challenged by liquid–liquid phase separation during solution preparation. Further investigation is always required when the prepared electrolyte has encountered liquid–liquid phase separation previously. Here, we propose a “cognate cosolvent” strategy to mediate phase-separated LiBF4/fluoroethylene carbonate (FEC)|ethyl trifluoroacetate (TFAE) mixtures with ethyl acetate (EA), forming effective LiBF4/FEC/EA/TFAE-based LHCEs (B-LHCEs). Because of their unique solvation structure, the B-LHCEs exhibit high oxidative stability, facilitating Li+ transport. The optimized B-LHCEs help single-crystal LiMn0.8Mn0.1Co0.1O2/Li batteries form robust interphases, improving interfacial stability. As a result, distinct performance can be obtained (4.5 V, 500 cycles, ~90%, 1400, ~70%; 25 C, 128 mAh g−1, 4.7 V, 500, 82.5%). This work turns the “impossible” into an “effective” high-voltage electrolyte design, transcending the previous paradigms of electrolyte investigation and enriching LHCE preparation research. Full article
Show Figures

Graphical abstract

24 pages, 5157 KiB  
Article
Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries
by Kevin Vattappara, Martin Finsterbusch, Dina Fattakhova-Rohlfing, Idoia Urdampilleta and Andriy Kvasha
Batteries 2025, 11(2), 42; https://doi.org/10.3390/batteries11020042 - 21 Jan 2025
Viewed by 1302
Abstract
Composite solid electrolytes are gaining interest regarding their use in Li-metal solid-state batteries. Although high ceramic content improves the electrochemical stability of ceramic-rich composite separators (C-SCE), the polymeric matrix also plays a vital role. In the first generation of C-SCE separators with a [...] Read more.
Composite solid electrolytes are gaining interest regarding their use in Li-metal solid-state batteries. Although high ceramic content improves the electrochemical stability of ceramic-rich composite separators (C-SCE), the polymeric matrix also plays a vital role. In the first generation of C-SCE separators with a PEO-based matrix, the addition of 90–95 wt% of Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) does not make C-SCE stable for cell cycling with high-voltage (HV) cathodes. For the next iteration, the objective was to find an HV-stable polymeric matrix for C-SCEs. Herein, we report results on optimizing C-SCE separators with different ceramics and polymers which can craft the system towards better stability with NMC622-based composite cathodes. Both LLZO and Li1.3Al0.3Ti1.7(PO4)3 (LATP) were utilized as ceramic components in C-SCE separators. Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) were used as polymers in the “polymer/LiTFSI/plasticizer”-based matrix. The initial phase of the selection criteria for the separator matrix involved assessing mechanical stability and ionic conductivity. Two optimized separator formulations were then tested for their electrochemical stability with both Li metal and HV composite cathodes. The results showed that Li/NMC622 cells with LP70_PVDF_HFP and LZ70_PDDA-TFSI separators exhibited more stable cycling performance compared to those with LZ90_PEO300k-based separators. Full article
Show Figures

Figure 1

14 pages, 2628 KiB  
Article
Study of the Suitability of Corncob Biochar as Electrocatalyst for Zn–Air Batteries
by Nikolaos Soursos, Theodoros Kottis, Vasiliki Premeti, John Zafeiropoulos, Katerina Govatsi, Lamprini Sygellou, John Vakros, Ioannis D. Manariotis, Dionissios Mantzavinos and Panagiotis Lianos
Batteries 2024, 10(6), 209; https://doi.org/10.3390/batteries10060209 - 16 Jun 2024
Cited by 2 | Viewed by 1906
Abstract
There has been a recent increasing interest in Zn–air batteries as an alternative to Li-ion batteries. Zn–air batteries possess some significant advantages; however, there are still problems to solve, especially related to the tuning of the properties of the air–cathode which should carry [...] Read more.
There has been a recent increasing interest in Zn–air batteries as an alternative to Li-ion batteries. Zn–air batteries possess some significant advantages; however, there are still problems to solve, especially related to the tuning of the properties of the air–cathode which should carry an inexpensive but efficient bifunctional oxygen reduction (ORR) and oxygen evolution (OER) reaction electrocatalyst. Biochar can be an alternative, since it is a material of low cost, it exhibits electric conductivity, and it can be used as support for transition metal ions. Although there is a significant number of publications on biochars, there is a lack of data about biochar from raw biomass rich in hemicellulose, and biochar with a small number of heteroatoms, in order to report the pristine activity of the carbon phase. In this work, activated biochar has been made by using corncobs. The biomass was first dried and minced into small pieces and pyrolyzed. Then, it was mixed with KOH and pyrolyzed for a second time. The final product was characterized by various techniques and its electroactivity as a cathode was determined. Physicochemical characterization revealed that the biochar had a hierarchical pore structure, moderate surface area of 92 m2 g−1, carbon phase with a relatively low sp2/sp3 ratio close to one, and a limited amount of N and S, but a high number of oxygen groups. The graphitization was not complete while the biochar had an ordered structure and contained significant O species. This biochar was used as an electrocatalyst for ORR and OER in Zn–air batteries where it demonstrated a satisfactory performance. More specifically, it reached an open-circuit voltage of about 1.4 V, which was stable over a period of several hours, with a short-circuit current density of 142 mA cm−2 and a maximum power density of 55 mW cm−2. Charge–discharge cycling of the battery was achieved between 1.2 and 2.1 V for a constant current of 10 mA. These data show that corncob biochar demonstrated good performance as an electrocatalyst in Zn–air batteries, despite its low specific surface and low sp2/sp3 ratio, owing to its rich oxygen sites, thus showing that electrocatalysis is a complex phenomenon and can be served by biochars of various origins. Full article
Show Figures

Figure 1

15 pages, 4083 KiB  
Article
DFT Simulations Investigating the Trapping of Sulfides by 1T-LixMoS2 and 1T-LixMoS2/Graphene Hybrid Cathodes in Li-S Batteries
by Shumaila Babar, Elaheh Hojaji, Qiong Cai and Constantina Lekakou
Batteries 2024, 10(4), 124; https://doi.org/10.3390/batteries10040124 - 5 Apr 2024
Cited by 3 | Viewed by 2209
Abstract
The aim of this study is to investigate new materials that can be employed as cathode hosts in Li-S batteries, which would be able to overcome the effect of the shuttling of soluble polysulfides and maximize the battery capacity and energy density. Density [...] Read more.
The aim of this study is to investigate new materials that can be employed as cathode hosts in Li-S batteries, which would be able to overcome the effect of the shuttling of soluble polysulfides and maximize the battery capacity and energy density. Density functional theory (DFT) simulations are used to determine the adsorption energy of lithium sulfides in two types of cathode hosts: lithiated 1T-MoS2 (1T-LixMoS2) and hybrid 1T-LixMoS2/graphene. Initial simulations of lithiated 1T-MoS2 structures led to the selection of an optimized 1T-Li0.75MoS2 structure, which was utilized for the formation of an optimized 1T-Li0.75MoS2 bilayer and a hybrid 1T-Li0.75MoS2/graphene bilayer structure. It was found that all sulfides exhibited super-high adsorption energies in the interlayer inside the 1T-Li0.75MoS2 bilayer and very good adsorption energy values in the interlayer inside the hybrid 1T-Li0.75MoS2/graphene bilayer. The placement of sulfides outside each type of bilayer, over the 1T-Li0.75MoS2 surface, yielded good adsorption energies in the range of −2 to −3.8 eV, which are higher than those over a 1T-MoS2 substrate. Full article
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 20675 KiB  
Review
Cathodes for Zinc-Ion Micro-Batteries: Challenges, Strategies, and Perspectives
by Ling Deng, Qunfang Lin, Zeyang Li, Juexian Cao, Kailing Sun and Tongye Wei
Batteries 2025, 11(2), 57; https://doi.org/10.3390/batteries11020057 - 2 Feb 2025
Viewed by 867
Abstract
The sustainable development of high-performance micro-batteries, characterized by miniaturized size, portability, enhanced safety, and cost-effectiveness, is crucial for the advancement of wearable and smart electronics. Zinc-ion micro-batteries (ZIMBs) have attracted widespread attention for their high energy density, environmental friendliness, excellent safety, and low [...] Read more.
The sustainable development of high-performance micro-batteries, characterized by miniaturized size, portability, enhanced safety, and cost-effectiveness, is crucial for the advancement of wearable and smart electronics. Zinc-ion micro-batteries (ZIMBs) have attracted widespread attention for their high energy density, environmental friendliness, excellent safety, and low cost. The key to designing high-performance ZIMBs lies in improving their volumetric capacity and cycle stability. This review focuses on material design, electrode fabrication, and the structural configuration of micro-batteries, providing a comprehensive analysis of the challenges and strategies associated with cathodes in ZIMBs. Additionally, the application of ZIMBs, which provide energy for electronics such as wearable devices, tiny robots, and sensors, is introduced. Finally, future perspectives on cathodes for ZIMBs are discussed, offering key insights into their design and fabrication in order to facilitate the successful integration of ZIMBs into practical applications. Full article
Show Figures

Figure 1

36 pages, 10088 KiB  
Review
Recent Advances in Lithium Iron Phosphate Battery Technology: A Comprehensive Review
by Tao Chen, Man Li and Joonho Bae
Batteries 2024, 10(12), 424; https://doi.org/10.3390/batteries10120424 - 1 Dec 2024
Cited by 2 | Viewed by 5698
Abstract
Lithium iron phosphate (LFP) batteries have emerged as one of the most promising energy storage solutions due to their high safety, long cycle life, and environmental friendliness. In recent years, significant progress has been made in enhancing the performance and expanding the applications [...] Read more.
Lithium iron phosphate (LFP) batteries have emerged as one of the most promising energy storage solutions due to their high safety, long cycle life, and environmental friendliness. In recent years, significant progress has been made in enhancing the performance and expanding the applications of LFP batteries through innovative materials design, electrode engineering, and manufacturing techniques. This review paper provides a comprehensive overview of the recent advances in LFP battery technology, covering key developments in materials synthesis, electrode architectures, electrolytes, cell design, and system integration. This review paper aims to provide a comprehensive overview of the recent advances in lithium iron phosphate (LFP) battery technology, encompassing materials development, electrode engineering, electrolytes, cell design, and applications. By highlighting the latest research findings and technological innovations, this paper seeks to contribute to the continued advancement and widespread adoption of LFP batteries as sustainable and reliable energy storage solutions for various applications. We also discuss the current challenges and future prospects for LFP batteries, emphasizing their potential role in sustainable energy storage solutions for various applications, including electric vehicles, renewable energy integration, and grid-scale energy storage. Full article
Show Figures

Graphical abstract

Back to TopTop