Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Separator Preparation Procedure
2.3. Cathode Preparation Procedure
2.4. Characterization
2.4.1. Physical–Chemical Properties
2.4.2. Electrochemical Properties
3. Results and Discussion
3.1. Optimization of Composite Separator Formulation
3.1.1. Microstructural Analysis
3.1.2. Ionic Conductivity
3.2. Electrochemical Characterization
3.2.1. Electrochemical Characterization in Symmetric Li/Li Coin Cells
3.2.2. Electrochemical Characterization in Li/NMC622 Coin Cells
3.3. Comparitive Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozawa, K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system. Solid. State Ion. 1994, 69, 212–221. [Google Scholar] [CrossRef]
- Eftekhari, A. Lithium Batteries for Electric Vehicles: From Economy to Research Strategy. ACS Sustain. Chem. Eng. 2019, 7, 5602–5613. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, T.; Ai, X.; Liang, C. Aligning academia and industry for unified battery performance metrics. Nat. Commun. 2018, 9, 5262. [Google Scholar] [CrossRef] [PubMed]
- Takada, K. Progress and prospective of solid-state lithium batteries. Acta Mater. 2013, 61, 759–770. [Google Scholar] [CrossRef]
- Hu, Y.-S. Batteries: Getting solid. Nat. Energy 2016, 1, 16042. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, Z.; An, X.; Yue, X.; Wang, J.; Abudula, A.; Guan, G. Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Mater. 2020, 32, 386–401. [Google Scholar] [CrossRef]
- Salvatierra, R.V.; Chen, W.; Tour, J.M. What Can be Expected from “Anode-Free” Lithium Metal Batteries? Adv. Energy Sustain. Res. 2021, 2, 2000110. [Google Scholar] [CrossRef]
- Yu, T.; Li, G.; Duan, Y.; Wu, Y.; Zhang, T.; Zhao, X.; Luo, M.; Liu, Y. The research and industrialization progress and prospects of sodium ion battery. J. Alloys Compd. 2023, 958, 170486. [Google Scholar] [CrossRef]
- Wang, H.; Ozkan, C.S.; Zhu, H.; Li, X. Advances in solid-state batteries: Materials, interfaces, characterizations, and devices. MRS Bull. 2023, 48, 1221–1229. [Google Scholar] [CrossRef]
- Schmaltz, T.; Hartmann, F.; Wicke, T.; Weymann, L.; Neef, C.; Janek, J. A Roadmap for Solid-State Batteries. Adv. Energy Mater. 2023, 13, 2301886. [Google Scholar] [CrossRef]
- Bates, A.M.; Preger, Y.; Torres-Castro, L.; Harrison, K.L.; Harris, S.J.; Hewson, J. Are solid-state batteries safer than lithium-ion batteries? Joule 2022, 6, 742–755. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, S.; He, Y.-B.; Kang, F.; Chen, L.; Li, H.; Yang, Q.-H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Lu, G.; Li, W.; Tao, Q.; Shi, C.; Jin, H.; Chen, G.; Wang, S. Fundamentals of Electrolytes for Solid-State Batteries: Challenges and Perspectives. Front. Mater. 2020, 7, 111. [Google Scholar] [CrossRef]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef]
- Öksüzoğlu, F.; Ateş, Ş.; Özkendir, O.M.; Çelik, G.; Eker, Y.R.; Baveghar, H. Structure and ionic conductivity of NASICON-type LATP solid electrolyte synthesized by the solid-state method. Ceram. Int. 2024, 50, 31435–31441. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, L.; Han, J.; Wen, K.; Guan, S.; Xue, C.; Zhang, Z.; Xu, B.; Lin, Y.; Shen, Y.; et al. Super Long-Cycling All-Solid-State Battery with Thin Li6PS5Cl-Based Electrolyte. Adv. Energy Mater. 2022, 12, 2200660. [Google Scholar] [CrossRef]
- Yang, X.; Gao, X.; Jiang, M.; Luo, J.; Yan, J.; Fu, J.; Duan, H.; Zhao, S.; Tang, Y.; Yang, R.; et al. Grain Boundary Electronic Insulation for High-Performance All-Solid-State Lithium Batteries. Angew. Chem. Int. Ed. 2023, 62, e202215680. [Google Scholar] [CrossRef]
- Li, Z.; Fu, J.; Zhou, X.; Gui, S.; Wei, L.; Yang, H.; Li, H.; Guo, X. Ionic Conduction in Polymer-Based Solid Electrolytes. Adv. Sci. 2023, 10, 2201718. [Google Scholar] [CrossRef]
- Bachman, J.C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S.F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev. 2016, 116, 140–162. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, M.; Gao, X.; Bao, D.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C.; et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal -OH group? Energy Environ. Sci. 2020, 13, 1318–1325. [Google Scholar] [CrossRef]
- Yang, X.; Yin, Q.; Wang, C.; Doyle-Davis, K.; Sun, X.; Li, X. Towards practically accessible high-voltage solid-state lithium batteries: From fundamental understanding to engineering design. Prog. Progress. Mater. Sci. 2023, 140, 101193. [Google Scholar] [CrossRef]
- Thompson, T.; Yu, S.; Williams, L.; Schmidt, R.D.; Garcia-Mendez, R.; Wolfenstine, J.; Allen, J.L.; Kioupakis, E.; Siegel, D.J.; Sakamoto, J. Electrochemical Window of the Li-Ion Solid Electrolyte Li7La3Zr2O12. ACS Energy Lett. 2017, 2, 462–468. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, J.; Fan, L.; Zhang, J.; Li, X. Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Mater. 2019, 19, 379–400. [Google Scholar] [CrossRef]
- Jie, J.; Liu, Y.; Cong, L.; Zhang, B.; Lu, W.; Zhang, X.; Liu, J.; Xie, H.; Sun, L. High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery. J. Energy Chem. 2020, 49, 80–88. [Google Scholar] [CrossRef]
- Seo, Y.; Jung, Y.-C.; Park, M.-S.; Kim, D.-W. Solid polymer electrolyte supported by porous polymer membrane for all-solid-state lithium batteries. J. Membr. Sci. 2020, 603, 117995. [Google Scholar] [CrossRef]
- Fu, C.; Homann, G.; Grissa, R.; Rentsch, D.; Zhao, W.; Gouveia, T.; Falgayrat, A.; Lin, R.; Fantini, S.; Battaglia, C. A Polymerized-Ionic-Liquid-Based Polymer Electrolyte with High Oxidative Stability for 4 and 5 V Class Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2022, 12, 2200412. [Google Scholar] [CrossRef]
- Lucia, M.; Akiko, T.; Graziano Di, D.; Henry, A.; Maria Assunta, N.; Stefano, P. Quasi-solid-state electrolytes—Strategy towards stabilising Li|inorganic solid electrolyte interfaces in solid-state Li metal batteries. Energy Mater. 2023, 3, 300019. [Google Scholar] [CrossRef]
- Villacis-Segovia, C.; Del Olmo, R.; Olmedo Martínez, J.L.; ÓDell, L.A.; Fernández, M.; Mecerreyes, D.; Kvasha, A.; Villaluenga, I. Understanding Li6.24La3Zr2Al0.24O11.98 effect on poly(ionic liquid)-based electrolytes for high voltage solid-state lithium batteries working at room temperature. Chem. Eng. J. 2024, 500, 156221. [Google Scholar] [CrossRef]
- Pan, Q.; Barbash, D.; Smith, D.M.; Qi, H.; Gleeson, S.E.; Li, C.Y. Correlating Electrode–Electrolyte Interface and Battery Performance in Hybrid Solid Polymer Electrolyte-Based Lithium Metal Batteries. Adv. Energy Mater. 2017, 7, 1701231. [Google Scholar] [CrossRef]
- Wu, S.; Wang, C.; Li, S.; Weng, J. Exploring electrode/polymer electrolyte interface chemistry and a regulating strategy of interfacial stability: A review. Mater. Chem. Front. 2024, 8, 2924–2943. [Google Scholar] [CrossRef]
- Maurya, D.K.; Bazri, B.; Srivastava, P.; Huang, J.-Y.; Hung, Y.-T.; Huang, W.-T.; Wei, D.-H.; Liu, R.-S. Ceramic Rich Composite Electrolytes: An Overview of Paradigm Shift toward Solid Electrolytes for High-Performance Lithium-Metal Batteries. Adv. Energy Mater. 2024, 14, 2402402. [Google Scholar] [CrossRef]
- Vattappara, K.; Finsterbusch, M.; Fattakhova-Rohlfing, D.; Kvasha, A. Composite Separators with Very High Garnet Content for Solid-State Batteries. ChemElectroChem 2024, 11, e202400323. [Google Scholar] [CrossRef]
- Tong, R.-A.; Chen, L.; Fan, B.; Shao, G.; Liu, R.; Wang, C.-A. Solvent-free process for blended PVDF-HFP/PEO and LLZTO composite solid electrolytes with enhanced mechanical and electrochemical properties for lithium metal batteries. ACS Appl. Energy Mater. 2021, 4, 11802–11812. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Croce, F.; Hassoun, J.; Scrosati, B.; Salomon, M.; Cassel, F. Hot-pressed, dry, composite, PEO-based electrolyte membranes: I. Ionic conductivity characterization. J. Power Sources 2003, 114, 105–112. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Scaccia, S.; Passerini, S. Investigation on the Stability of the Lithium-Polymer Electrolyte Interface. J. Electrochem. Soc. 2000, 147, 4448. [Google Scholar] [CrossRef]
- Montanino, M.; Passerini, S.; Appetecchi, G.B. 4-Electrolytes for rechargeable lithium batteries. In Rechargeable Lithium Batteries; Franco, A.A., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 73–116. [Google Scholar]
- Yuan, Y.; Xue, K.; Ma, Y.; Peng, X.; Wang, B.; Liu, X.; Liu, M.; Song, Y.; Lu, H. Ionic liquid assisted quasi-solid-state polymer electrolyte for rechargeable lithium metal batteries operating at room temperature. Electrochim. Acta 2023, 440, 141753. [Google Scholar] [CrossRef]
- Fan, L.Z.; Hu, Y.S.; Bhattacharyya, A.J.; Maier, J. Succinonitrile as a Versatile Additive for Polymer Electrolytes. Adv. Funct. Mater. 2007, 17, 2800–2807. [Google Scholar] [CrossRef]
- Rani, I.; Arwish, S.; Khan, K.H.; Zamurad, M.; Shah, S.M.; Hussain, H. Effect of succinonitrile on the structural, ion conductivity, and dielectric properties of PVDF-HFP based solid polymer electrolytes. J. Appl. Polym. Sci. 2024, 142, e56331. [Google Scholar] [CrossRef]
- Ben Youcef, H.; Garcia-Calvo, O.; Lago, N.; Devaraj, S.; Armand, M. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries. Electrochim. Acta 2016, 220, 587–594. [Google Scholar] [CrossRef]
- Falco, M.; Castro, L.; Nair, J.R.; Bella, F.; Bardé, F.; Meligrana, G.; Gerbaldi, C. UV-Cross-Linked Composite Polymer Electrolyte for High-Rate, Ambient Temperature Lithium Batteries. ACS Appl. Energy Mater. 2019, 2, 1600–1607. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Anothumakkool, B.; Kurungot, S.; Winter, M.; Nair, J.R. In situ polymerization process: An essential design tool for lithium polymer batteries. Energy Environ. Sci. 2021, 14, 2708–2788. [Google Scholar] [CrossRef]
- Nguyen, A.-G.; Verma, R.; Song, G.-C.; Kim, J.; Park, C.-J. In Situ Polymerization on a 3D Ceramic Framework of Composite Solid Electrolytes for Room-Temperature Solid-State Batteries. Adv. Sci. 2023, 10, 2207744. [Google Scholar] [CrossRef] [PubMed]
- Shukla, N.; Thakur, A.K.; Shukla, A.; Marx, D.T. Ion Conduction Mechanism in Solid Polymer Electrolyte: An Applicability of Almond-West Formalism. Int. J. Electrochem. Sci. 2014, 9, 7644–7659. [Google Scholar] [CrossRef]
- Alarco, P.-J.; Abu-Lebdeh, Y.; Abouimrane, A.; Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 2004, 3, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-H.; Hu, C.-W.; Kao, S.-Y.; Kung, C.-W.; Chen, H.-W.; Ho, K.-C. An all-organic solid-state electrochromic device containing poly(vinylidene fluoride-co-hexafluoropropylene), succinonitrile, and ionic liquid. Sol. Energy Mater. Sol. Cells 2015, 143, 606–612. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, C.-Z.; Yuan, H.; Cheng, X.-B.; Huang, J.-Q.; Zhang, Q. Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies. Adv. Funct. Mater. 2021, 31, 2009925. [Google Scholar] [CrossRef]
- Zhang, M.; Becking, J.; Stan, M.C.; Lenoch, A.; Bieker, P.; Kolek, M.; Winter, M. Wetting Phenomena and their Effect on the Electrochemical Performance of Surface-Tailored Lithium Metal Electrodes in Contact with Cross-linked Polymeric Electrolytes. Angew. Chem. Int. Ed. 2020, 59, 17145–17153. [Google Scholar] [CrossRef]
- Huang, C.; Li, Z.; Duan, S.; Xie, S.; Yuan, S.; Hou, S.; Cao, G.; Jin, H. Improving the stability of NASICON-type electrolyte with Li metal anode by interfacial modification. J. Power Sources 2022, 536, 231491. [Google Scholar] [CrossRef]
- He, M.; Hu, L.; Xue, Z.; Su, C.C.; Redfern, P.; Curtiss, L.A.; Polzin, B.; von Cresce, A.; Xu, K.; Zhang, Z. Fluorinated Electrolytes for 5-V Li-Ion Chemistry: Probing Voltage Stability of Electrolytes with Electrochemical Floating Test. J. Electrochem. Soc. 2015, 162, A1725. [Google Scholar] [CrossRef]
- Ahniyaz, A.; de Meatza, I.; Kvasha, A.; Garcia-Calvo, O.; Ahmed, I.; Sgroi, M.F.; Giuliano, M.; Dotoli, M.; Dumitrescu, M.-A.; Jahn, M.; et al. Progress in solid-state high voltage lithium-ion battery electrolytes. Adv. Appl. Energy 2021, 4, 100070. [Google Scholar] [CrossRef]
- Mathew, A.; Lacey, M.J.; Brandell, D. Investigating oxidative stability of lithium-ion battery electrolytes using synthetic charge-discharge profile voltammetry. J. Power Sources Adv. 2021, 11, 100071. [Google Scholar] [CrossRef]
- Hernández, G.; Johansson, I.L.; Mathew, A.; Sångeland, C.; Brandell, D.; Mindemark, J. Going Beyond Sweep Voltammetry: Alternative Approaches in Search of the Elusive Electrochemical Stability of Polymer Electrolytes. J. Electrochem. Soc. 2021, 168, 100523. [Google Scholar] [CrossRef]
- López-Aranguren, P.; Judez, X.; Chakir, M.; Armand, M.; Buannic, L. High Voltage Solid State Batteries: Targeting High Energy Density with Polymer Composite Electrolytes. J. Electrochem. Soc. 2020, 167, 020548. [Google Scholar] [CrossRef]
- Castillo, J.; Robles-Fernandez, A.; Cid, R.; González-Marcos, J.A.; Armand, M.; Carriazo, D.; Zhang, H.; Santiago, A. Dehydrofluorination Process of Poly(vinylidene difluoride) PVDF-Based Gel Polymer Electrolytes and Its Effect on Lithium-Sulfur Batteries. Gels 2023, 9, 336. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, B.; Li, J.; Li, S.; Zhang, G.; Liu, S.; Cui, Y.; Liu, H. Modified Poly(vinylidene fluoride-co-hexafluoropropylene) Polymer Electrolyte for Enhanced Stability and Polymer Degradation Inhibition toward the Li Metal Anode. ACS Appl. Energy Mater. 2022, 5, 9049–9057. [Google Scholar] [CrossRef]
- Zhang, S.S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater. 2020, 24, 247–254. [Google Scholar] [CrossRef]
- Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H.A. Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries. J. Electrochem. Soc. 2017, 164, A1361. [Google Scholar] [CrossRef]
- Dubarry, M.; Anseán, D. Best practices for incremental capacity analysis. Front. Energy Res. 2022, 10, 1023555. [Google Scholar] [CrossRef]
- Mann, M.; Küpers, M.; Häuschen, G.; Finsterbusch, M.; Fattakhova-Rohlfing, D.; Guillon, O. The influence of hafnium impurities on the electrochemical performance of tantalum substituted Li7La3Zr2O12 solid electrolytes. Ionics 2022, 28, 53–62. [Google Scholar] [CrossRef]
- Rosen, M.; Hecker, P.; Mann, M.; Ma, Q.; Gross, J.P.; Schwaiger, R.; Guillon, O.; Fattakhova-Rohlfing, D.; Finsterbusch, M. Reducing the environmental footprint of solid-electrolytes—A green synthesis route for LATP. Green Chem. 2024, 26, 2712–2720. [Google Scholar] [CrossRef]
- Tong, X.; Thangadurai, V.; Wachsman, E.D. Highly conductive Li garnets by a multielement doping strategy. Inorg Chem 2015, 54, 3600–3607. [Google Scholar] [CrossRef] [PubMed]
- Thieu, T.; Fedeli, E.; Garcia-Calvo, O.; Combarro, I.; Nicolas, J.; Urdampilleta, I.; Kvasha, A. Long cycle-life prototype lithium-metal all-solid-state pouch cells employing garnet-rich composite electrolyte. Electrochim. Acta 2021, 397, 139249. [Google Scholar] [CrossRef]
C-SCE Sample Name | Generation of Separators | Ceramic | Organic | Post- Processing Parameters | Physical Observations | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ceramic Type | Content (wt%) | Polymer Type | Polymer Content (wt%) | LiTFSI Content (wt%) | Plasticizer Content (wt%) | Solvent Used | ||||
LZ90_PEO300k * | GEN 1 | LLZO | 90 | PEO Mw-300 kg/mol | 7.5 | 2.5 | 0.0 | ACN | 60 °C, 100 bar, 1 min | Smooth surface with less pores |
LZ95_PEO300k * | LLZO | 95 | PEO Mw-300 kg/mol | 3.8 | 1.2 | ACN | 60 °C, 100 bar, 1 min | Smooth surface with less pores | ||
LZ70_PDDA-TFSI | GEN 2 | LLZO | 70 | PDDA-TFSI Mw-300 kg/mol | 12 | 7.5 | 10.5 | ACN | 80 °C, 10 bar, 30 s | Smooth surface with less pores |
LZ80_PDDA-TFSI | LLZO | 80 | PDDA-TFSI Mw-300 kg/mol | 8 | 5 | 7 | ACN | 80 °C, 10 bar, 30 s | Rough surface with less pores | |
LZ90_PDDA-TFSI | LLZO | 90 | PDDA-TFSI Mw-300 kg/mol | 4 | 2.5 | 3.5 | ACN | 80 °C, 10 bar, 30 s | Rough surface with lot of pores | |
LP70_PVDF-HFP | LATP | 70 | PVDF-HFP Mw-400 kg/mol | 6.9 | 4.8 | 18.3 | Acetone | 80 °C, 10 bar, 30 s | Smooth surface with less pores | |
LP70_PVDF-HFP without SCN | LATP | 70 | PVDF-HFP Mw-400 kg/mol | 9 | 7.5 | 13.5 | Acetone | 80 °C, 10 bar, 30 s | Smooth surface with less pores | |
LZ70_PBA | LLZO | 70 | PBA Mw-12 kg/mol | 24.9 | 5.1 | 0.0 | DMC | 60 °C, 10 bar, 30 s | Surface cracking after post-processing | |
LZ80_PBA | LLZO | 80 | PBA Mw-12 kg/mol | 16.6 | 3.4 | 0.0 | DMC | 60 °C, 10 bar, 30 s | Surface cracking after post-processing |
C-SCE Sample Name | Cycle Number | Discharge Capacity, mAh/g | Capacity Retention, % | Coulombic Efficiency, % | Average Voltage, V | State of Cells | |
---|---|---|---|---|---|---|---|
Charge | Discharge | ||||||
Li/LZ90_PEO300k/NMC622 GEN 1 | 1 | 172.69 | - | 88.09 | 3.88 | 3.71 | Start |
10 | 111.79 | 64 | 96.64 | 3.94 | 3.51 | Mid | |
35 | 6.6 | 3.8 | 106.82 ** | 4.27 | 3.17 | Stop | |
Li/LZ70_PDDA-TFSI/NMC622 GEN 2 | 1 | 145.15 | - | 74.94 | 3.94 | 3.46 | Start |
10 | 147.07 | 94 | 97.31 | 3.94 | 3.51 | Mid | |
50 | 101.87 | 61 | 97.18 | 4.0 | 3.48 | Stop | |
Li/LP70_PVDF-HFP/NMC622 GEN 2 | 1 | 189.07 | - | 91.59 | 3.87 | 3.75 | Start |
10 | 170.42 | 90 | 98.73 | 3.89 | 3.68 | Mid | |
22 | 151.74 | 80 | 79.13 | 3.93 | 3.55 | ||
50 | 51.45 | 27 | 70.0 | 4.23 | 3.35 | Stop |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vattappara, K.; Finsterbusch, M.; Fattakhova-Rohlfing, D.; Urdampilleta, I.; Kvasha, A. Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries. Batteries 2025, 11, 42. https://doi.org/10.3390/batteries11020042
Vattappara K, Finsterbusch M, Fattakhova-Rohlfing D, Urdampilleta I, Kvasha A. Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries. Batteries. 2025; 11(2):42. https://doi.org/10.3390/batteries11020042
Chicago/Turabian StyleVattappara, Kevin, Martin Finsterbusch, Dina Fattakhova-Rohlfing, Idoia Urdampilleta, and Andriy Kvasha. 2025. "Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries" Batteries 11, no. 2: 42. https://doi.org/10.3390/batteries11020042
APA StyleVattappara, K., Finsterbusch, M., Fattakhova-Rohlfing, D., Urdampilleta, I., & Kvasha, A. (2025). Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries. Batteries, 11(2), 42. https://doi.org/10.3390/batteries11020042