You are currently viewing a new version of our website. To view the old version click .
  • Indexed inScopus
  • 17 daysTime to First Decision

Aquaculture Journal

Aquaculture Journal is an international, peer-reviewed, open access journal on aquaculture-related aquatic science published quarterly online by MDPI.

All Articles (94)

Inefficient management of dissolved oxygen (DO) in intensive aquaculture systems limits fish welfare and productivity by creating oxygen-deficient zones and promoting hydrodynamic conditions that hinder their dispersion. Because water movement directly influences how oxygen is transported and mixed within the culture unit, inadequate flow management can allow localized hypoxia to persist even when total oxygen input appears sufficient. To address this issue, this study proposes an integrated methodology that combines in situ respirometry measurements with Computational Fluid Dynamics (CFD) simulations to evaluate the spatial distribution of DO and diagnose the operational performance of aquaculture systems. The methodology quantifies oxygen consumption using intermittent-flow respirometry, applies a three-dimensional two-phase CFD model (water–oxygen) incorporating experimental oxygen consumption rates as boundary conditions, and validates the model under real operating conditions, focusing on active metabolism as the most demanding physiological state. The model generates a spatial distribution of DO patterns that are significantly modified by pond geometry, water flow characteristics, the metabolism of the fish and fish positioning. The differences between experimental and simulated values ranged from 7.8% to 10.7%, confirming the accuracy of the proposed method. The integration of in situ metabolic measurements with CFD modeling provides a realistic representation of DO dynamics, enabling system optimization and promoting more efficient and sustainable aquaculture.

19 December 2025

General diagram of the research methodology.

Controlled environment agriculture technologies are traditionally applied to higher plants to enhance growth and cultivation periods, but such a concept has seldom been applied to seaweed aquaculture. A new dimension has been opened, wherein preliminary investigations in Ulva ohnoi revealed that continuous exposure (24 h) of light modulates chlorophyll-a fluorescence, carbohydrate content, and biochemical composition affecting the daily growth rate. DGR (daily growth rate) increased 2.6 times under continuous illumination for 24 h compared to the 12 h L/D photoperiod. Mg and carbohydrate contents were raised by 1.1 and 1.2 times, respectively, under continuous illumination. DGR formed a strong positive correlation with carbohydrate, protein, carotenoid, chlorophyll-a fluorescence, C, H, and Mg levels. A short cultivation cycle (15 days) was proposed to enable a consistent, continuous high growth and to avoid the induction of reproduction. The feedstock demand for bio-products, aquaculture feed, biomaterials, functional food, and food additives is registering unprecedented feedstock demand for Ulva. However, further detailed studies are desired to understand the seasonality and economic viability of scaling up this technique for commercial implementation.

15 December 2025

DGR (a) and photosynthesis (b) of Ulva ohnoi under the control and treatment conditions, respectively. Data shown are the mean ± SD (n = 5). Different letters above bars depicts significant difference (ANOVA, p < 0.05).

Accurate prediction of shrimp body weight is critical for optimizing harvest timing, feed management, and stocking density decisions in intensive aquaculture. While prior studies emphasize environmental factors, operational management variables—particularly harvesting metrics—remain understudied. This study quantified the predictive importance of harvesting-related variables using 5 years of industrial-scale operational data from 12 ponds (5479 cleaned records, 34.94% retention rate). We trained seven machine learning models and applied three independent feature importance methods: consensus importance ranking, SHAP explainability analysis, and Pearson correlations. Main findings: Operational variables (days of culture: 2.833 SHAP, stocking density: 1.871, cumulative feed: 1.510) ranked substantially above environmental variables (temperature: 0.123, pH: 0.065, dissolved oxygen: 0.077). Partial harvest frequency showed bimodal clustering, indicating two distinct viable operational strategies. The Weighted Ensemble model achieved the highest performance (R2 = 0.829, RMSE = 4.23 g, MAE = 3.12 g). Model stability analysis via 10-fold GroupKFold cross-validation showed that the Artificial Neural Network (ANN) exhibited the tightest confidence bounds (0.708 g width, 27.7% coefficient of variation), indicating exceptional consistency. This is the first study to systematically analyze the importance of harvesting variables using SHAP explainability, revealing that operational management decisions may yield greater returns than marginal environmental control investments. Our findings suggest that operational optimization may be more impactful than environmental fine-tuning in well-managed systems.

5 December 2025

Correlation matrix heatmap showing all pairwise correlations between 14 features and mean body weight (mbw). Red indicates positive correlations, blue indicates negative correlations, and white indicates zero correlation. Features include DoC, feed, feed_cum, pond_size, stocking_density, num_aerators, partial_harvest_kg, harvest_cum_kg, partial_count, alkalinity, salinity, do, and ph. Harvesting-related variables (partial_harvest_kg, harvest_cum_kg, partial_count) show moderate to strong positive correlations with mbw (r = 0.19–0.76), while environmental variables show weak negative correlations (r = −0.08 to −0.20). DoC shows the strongest correlation with mbw (r = 0.95).

The Indonesian coastline holds significant potential for aquaculture but is increasingly vulnerable to climate change impacts such as land subsidence, salinization, and floodings. Ensuring stable income for local communities is essential, especially during extreme events like King Tides, which cause extensive floodings. This study assessed the productivity and economic returns of an agaroid seaweed monoculture compared to co-cultivation with Giant tiger prawn, Milkfish, and Barramundi during a King Tide. The experiment was conducted in conventional ponds with seaweed monoculture or combined with one of the three other commodities. The experiment ran from May until October in 2022 and was performed in triplicate. Floodings equalized water parameters. The results demonstrated that all systems provided stable income, with co-cultivation increasing profitability. Average revenues per hectare were USD 777 (seaweed monoculture), USD 832 (with shrimp), USD 1622 (with Milkfish), and USD 2014 (with Barramundi). Agar content was significantly higher in the seaweed monoculture, and gel strength was found to be significantly higher in the seaweeds co-cultivated with shrimp and Milkfish. Total agar production did not differ between the treatments. These findings suggest that integrated aquaculture systems can enhance income resilience while supporting food security in climate-impacted coastal zones. The approach offers a promising strategy for combining livelihood stability with adaptive coastal management and reduced environmental impact but needs to be tailored to local conditions.

5 December 2025

(a) The experiment was conducted at Randusanga Village, Brebes Dictrict, Central Java Province. (b) Pond’s experiment, red: seaweed and seabass (pond marker numbers 2, 6, 12); yellow: seaweed and shrimp (marker numbers 1, 4, 10); green: seaweed (marker numbers 7, 9, 11); blue: seaweed and Milkfish (marker numbers 3, 5, 8).

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Aquac. J. - ISSN 2673-9496