applsci-logo

Journal Browser

Journal Browser

Current Advances and Future Trend in Enhanced Oil Recovery

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Earth Sciences".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 1388

Special Issue Editors

School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Interests: gas flooding; chemical flooding; heavy oil/shale oil/tight oil recovery
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Interests: EOR; CCUS; chemical flooding; heavy oil
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Interests: low permeability; tight oil CO2 injection development; profile control and water plugging; chemical flooding
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Due the continuous development of conventional oil reservoirs, the difficulty of stabilizing production has increased in recent years; meanwhile, the development of unconventional oil reservoirs is facing technical challenges, and the demand for new theories, methods and technologies that facilitate the development of oilfields and improve the recovery rate is growing. In view of this situation and the new problems and challenges faced in the development ofoilfields, after continuous scientific and technological investment and innovative research, many new mechanisms, new means and new methods of oilfield development have emerged, and some of them have moved out of the laboratory and been tested in the field; some of these have achieved good preliminary results. The scope of this Special Issue includes recent advances in fundamental research on in situ sampling and the non-destructive testing of subsurface rock/fluid, micro- and nano-scale flow mechanisms and physical simulation, reservoir modeling and numerical simulation, as well as research on new methods for enhancing the recovery rate of waterflooding, chemical flooding, gas flooding, thermal and unconventional reservoir development; this is in terms of the oil displacement mechanism, technological routes, oil displacement agents, and key technologies. In response to the demand for enhanced recovery technology, this Special Issue will analyze the problems and deficiencies associated with various technologies, and looks forward to receiving studies on various methods that provide a reference for future research.

Dr. Long Xu
Dr. Hailong Zhao
Dr. Mingchen Ding
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • oilfield development
  • enhanced recovery
  • conventional reservoirs
  • unconventional reservoirs
  • improved water drive
  • chemical drive
  • research progress
  • development outlook

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 8338 KiB  
Article
Hybrid Huff-n-Puff Process for Enhanced Oil Recovery: Integration of Surfactant Flooding with CO2 Oil Swelling
by Abhishek Ratanpara, Joshua Donjuan, Camron Smith, Marcellin Procak, Ibrahima Aboubakar, Philippe Mandin, Riyadh I. Al-Raoush, Rosalinda Inguanta and Myeongsub Kim
Appl. Sci. 2024, 14(24), 12078; https://doi.org/10.3390/app142412078 - 23 Dec 2024
Viewed by 986
Abstract
With increasing energy demands and depleting oil accessibility in reservoirs, the investigation of more effective enhanced oil recovery (EOR) methods for deep and tight reservoirs is imminent. This study investigates a novel hybrid EOR method, a synergistic approach of nonionic surfactant flooding with [...] Read more.
With increasing energy demands and depleting oil accessibility in reservoirs, the investigation of more effective enhanced oil recovery (EOR) methods for deep and tight reservoirs is imminent. This study investigates a novel hybrid EOR method, a synergistic approach of nonionic surfactant flooding with intermediate CO2-based oil swelling. This study is focused on the efficiency of surfactant flooding and low-pressure oil swelling in oil recovery. We conducted a fluorescence-based microscopic analysis in a microchannel to explore the effect of sodium dodecyl sulfate (SDS) surfactant on CO2 diffusion in Texas crude oil. Based on the change in emission intensity of oil, the results revealed that SDS enhanced CO2 diffusion at low pressure in oil, primarily due to SDS aggregation and reduced interfacial tension at the CO2 gas–oil interface. To validate the feasibility of our proposed EOR method, we adopted a ‘reservoir-on-a-chip’ approach, incorporating flooding tests in a polymethylmethacrylate (PMMA)-based micromodel. We estimated the cumulative oil recovery by comparing the results of two-stage surfactant flooding with intermediate CO2 swelling at different pressures. This novel hybrid approach test consisted of a three-stage sequence: an initial flooding stage, followed by intermediate CO2 swelling, and a second flooding stage. The results revealed an increase in cumulative oil recovery by nearly 10% upon a 2% (w/v) solution of SDS and water flooding compared to just water flooding. The results showed the visual phenomenon of oil imbibition during the surfactant flooding process. This innovative approach holds immense potential for future EOR processes, characterized by its unique combination of surfactant flooding and CO2 swelling, yielding higher oil recovery. Full article
(This article belongs to the Special Issue Current Advances and Future Trend in Enhanced Oil Recovery)
Show Figures

Figure 1

Back to TopTop