Parasite Epidemiology and Molecular Identification in Wild, Domestic, and Companion Animals: 2nd Edition

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Veterinary Clinical Studies".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 658

Special Issue Editors

Hunan Provincial the Key Laboratory of Protein Engineering in Animal Vaccine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
Interests: parasite; epidemiology; molecule identification; omics; genetic evolution; phylogeny
Special Issues, Collections and Topics in MDPI journals
Hunan Provincial the Key Laboratory of Protein Engineering in Animal Vaccine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
Interests: parasitological molecular biology; molecule identification; omics; genetic evolution
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Wild, domestic, and companion animals host diverse parasites, including many nematodes, trematodes, cestodes, protozoa, and arthropods, endangering public health. Urbanization and exotic species boost zoonotic parasite spread. Epidemiological studies can emphasize the etiology and monitoring of parasite infections, using tools such as fecal or visual examinations, molecular diagnostics, and immunological techniques. They can also explore the genetic responses of parasites to hosts or environments via genome sequencing and data analysis with bioinformatics tools.

Original research articles are welcomed, especially those exploring the impacts of factors like climate change, anthelmintic treatments, and host immune responses, aiming to improve animal management and welfare and prevent parasite transmission from animals to humans under the "One Health" concept.

Dr. Wei Liu
Dr. Yisong Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • epidemiology
  • molecule identification
  • nematode
  • cestode
  • trematode
  • arthropod
  • wild animals
  • domestic animals
  • companion animals

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 1853 KiB  
Article
Genetic Diversity in the Diminazene Resistance-Associated P2 Adenosine Transporter-1 (AT-1) Gene of Trypanosoma evansi
by Shoaib Ashraf, Ghulam Yasein, Qasim Ali, Kiran Afshan, Martha Betson, Neil Sargison and Umer Chaudhry
Animals 2025, 15(5), 756; https://doi.org/10.3390/ani15050756 - 6 Mar 2025
Viewed by 482
Abstract
Trypanosomes are parasitic protozoa that cause severe diseases in humans and animals. The most important species of Trypanosmes include Trypanosoma evansi and Trypanosoma brucei gambiense. The most well-known human diseases are sleeping sickness in Africa and Chagas disease in South America. The [...] Read more.
Trypanosomes are parasitic protozoa that cause severe diseases in humans and animals. The most important species of Trypanosmes include Trypanosoma evansi and Trypanosoma brucei gambiense. The most well-known human diseases are sleeping sickness in Africa and Chagas disease in South America. The most identified animal diseases include Nagana in the African tsetse fly belt and Surra in South Asia, North Africa, and the Middle East. Surra is caused by Trypanosoma evansi. Diminazene resistance is an emerging threat caused by T. evansi infecting animals. The underlying mechanism of diminazene resistance is poorly understood. Trypanosoma brucei gambiense causes African sleeping sickness. The development of diminazene resistance in Trypanosoma brucei gambiense is associated with the alterations in the corresponding P2 adenosine transporter-1 (AT-1) gene. In the present study, by extrapolating the findings from Trypanosoma brucei gambiense, we analyzed genetic diversity in the P2 adenosine transporter-1 gene (AT-1) from T. evansi to explore a potential link between the presence of mutations in this locus and diminazene treatment in ruminants. We examined T. evansi-infected blood samples collected from goats, sheep, camels, buffalo, and cattle in seven known endemic regions of the Punjab province of Pakistan. Heterozygosity (He) indices indicated a high level of genetic diversity between seven T. evansi field isolates that had resistance-type mutations at codons 178E/S, 239Y/A/E, and 286S/H/I/D/T of the P2 adenosine transporter-1 (AT-1) locus. A low level of genetic diversity was observed in 19 T. evansi field isolates with susceptible-type mutations at codons A178, G181, D239, and N286 of the P2 adenosine transporter-1 (AT-1) locus. Our results on T. evansi warrant further functional studies to explore the relationship between diminazene resistance and the mutations in AT-1. Full article
Show Figures

Figure 1

Back to TopTop