A Cloud-Based Intelligence System for Asian Rust Risk Analysis in Soybean Crops
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
- 1.
- Image dataset: organized according to the protocol established by [33], where soybean leaves were collected from georeferenced plots and imaged under controlled laboratory lighting using a 24-megapixel digital camera. The images were acquired at a 90-degree angle with a 19-centimeter camera-to-leaf distance. The resulting dataset consists of sRGB images showing soybean leaves with various ASR symptoms against a complex background, with dimensions of 4128 × 3096 pixels, a resolution of 12.78 megapixels, and three color channels;
- 2.
- Climate data: station name and location; station code; municipality; latitude, longitude; start date; end date; measurement periodicity: daily;
- 3.
- Plant data: the crop variety (used the BRS-536), distance between plants and rows, plant height, and number of plants per linear meter.
2.2. Methods
Algorithm 1: Data Structuring |
|
Algorithm 2: Image Processing |
2.3. Description of Data Fusion Process
Algorithm 3: Data Fusion with Fuzzy Logic Approach |
Algorithm 4: Data Fusion with Hidden Markov Chain Approach |
|
3. Results and Discussion
3.1. Implementation of the Cloud Architecture and Interfaces of the Intelligent System
3.2. Image Processing and Classification Performance
3.3. Results of Variable Fusion and Fuzzy Modeling for Favorability Prediction
3.4. Results of Variable Fusion and Markovian Modeling for Favorability Prediction
3.5. Comparative Evaluation of the Results Between Modeling Based on the Fuzzy System and the Hidden Markov Chain
3.6. Analytical Reports
3.7. Computational Cost
3.8. System Validation with Phytopathologists and Agronomists
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acronym | Meaning |
ACS | Analytics Cloud Service |
AD | Autonomous Database |
AI | Artificial Intelligence |
AMD | Advanced Micro Device |
API | Application Programming Interface |
ASR | Asian Soybean Rust |
AUC | Area Under the Curve |
CC | Correlation Coefficient |
CNN | Convolutional Neural Network |
COG | Center of Gravity |
DL | Data Lake |
DM | Data Mart |
DSE | Data Science Environment |
DW | Data Warehouse |
Embrapa | Brazilian Agricultural Research Corporation |
ETL | Extract, Transform, Load |
Fapesp | São Paulo Research Foundation |
FN | False Negative |
FP | False Positive |
FSIM | Feature Similarity Index |
GB | Gigabyte |
GIS | Geographic Information System |
HOG | Histogram of Oriented Gradients |
HU | Hu Moments |
INMET | Instituto Nacional de Meteorologia |
IoT | Internet of Things |
KNN | K-Nearest Neighbor |
MAPA | Ministry of Agriculture, Livestock and Food Supply (Brazil) |
MHz | Megahertz |
MSE | Mean Squared Error |
OLAP | Online Analytical Processing |
OS | Object Storage |
PCA | Principal Component Analysis |
PSNR | Peak Signal-to-Noise Ratio |
RD | Relational Database |
RF | Random Forest |
RGB | Red, Green, Blue |
RH | Relative Humidity |
ROC | Receiver Operating Characteristic |
ROI | Region of Interest |
SIFT | Scale-Invariant Feature Transform |
SQL | Structured Query Language |
SSIM | Structural Similarity Index |
SVM | Support Vector Machine |
TFP | True False Positive |
TN | True Negative |
TNR | True Negative Rate |
TP | True Positive |
TPR | True Positive Rate |
TVP | True Positive Rate |
VCN | Virtual Cloud Network |
References
- Rinaldi, M.; Murino, T.; Gebennini, E.; Morea, D.; Bottani, E. A literature review on quantitative models for supply chain risk management: Can they be applied to pandemic disruptions? Comput. Ind. Eng. 2022, 170, 108329. [Google Scholar] [CrossRef] [PubMed]
- García-Machado, J.J.; Greblikaitė, J.; Iranzo Llopis, C.E. Risk Management Tools in the Agriculture Sector: An Updated Bibliometric Mapping Analysis. Studies in Risk and Sustainable Development; University of Economics in Katowice: Katowice, Poland, 2024; pp. 1–26. [Google Scholar]
- Hackfort, S.; Marquis, S.; Bronson, K. Harvesting value: Corporate strategies of data assetization in agriculture and their socio-ecological implications. Big Data Soc. 2024, 11, 20539517241234279. [Google Scholar] [CrossRef]
- Ali, G.; Mijwil, M.M.; Buruga, B.A.; Abotaleb, M.; Adamopoulos, I. A survey on artificial intelligence in cybersecurity for smart agriculture: State-of-the-art, cyber threats, artificial intelligence applications, and ethical concerns. Mesopotamian J. Comput. Sci. 2024, 2024, 53–103. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Acharya, B.; Sahoo, P.S. Agricultural farming decision support system using artificial intelligence: A comparative analysis. In Optimizing Smart and Sustainable Agriculture for Sustainability; CRC Press: Boca Raton, FL, USA, 2025; pp. 212–236. [Google Scholar]
- Armstrong, M. The World’s Leading Soybean Producers. Statista. 2023. Available online: https://www.statista.com/chart/19323/the-worlds-leading-soybean-producers/ (accessed on 22 June 2025).
- Oerke, E.C.; Dehne, H.W. Safeguarding production—Losses in major crops and the role of crop protection. Crop Prot. 2004, 23, 275–285. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Foreign Agricultural Service. Foreign Agricultural Service. 2025. Available online: https://www.fas.usda.gov/ (accessed on 25 June 2025).
- Godoy, C.V.; Seixas, C.D.S.; Soares, R.M.; Meyer, M.C.; Costamilan, L.M.; Adegás, F.S. Best Practices for the Management of Asian Soybean Rust; Technical Bulletin (Infoteca-E); Embrapa Soybean: Londrina, Brazil, 2017; Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1074899 (accessed on 10 October 2024). (In Portuguese)
- Goellner, K.; Loehrer, M.; Langenbach, C.; Conrath, U.; Koch, E.; Schaffrath, U. Phakopsora pachyrhizi, the causal agent of Asian soybean rust. Mol. Plant Pathol. 2010, 11, 169–177. [Google Scholar] [CrossRef]
- Beruski, G.C.; Gleason, M.L.; Sentelhas, P.C.; Pereira, A.B. Leaf wetness duration estimation and its influence on a soybean rust warning system. Australas. Plant Pathol. 2019, 48, 395–408. [Google Scholar] [CrossRef]
- Bedin, E. Foliar Applications of Copper in the Management of Asian Soybean Rust. Ph.D. Thesis, University of Passo Fundo, Passo Fundo, Brazil, 2018. (In Portuguese). [Google Scholar]
- Nunes, C.D.M.; da Silva Martins, J.F.; Del Ponte, E.M. Validation of a Model for Predicting Asian Soybean Rust Occurrence Based on Rainfall Data; Technical Bulletin 1516-8832; Embrapa Clima Temperado: Pelotas, Brazil, 2018; INFOTECA-E. (In Portuguese) [Google Scholar]
- Mila, A.; Yang, X.; Carriquiry, A. Bayesian logistic regression of Soybean Sclerotinia Stem Rot prevalence in the US North-central region: Accounting for uncertainty in Parameter Estimation. Phytopathology 2003, 93, 758–764. [Google Scholar] [CrossRef]
- de Carvalho Alves, M.; Pozza, E.A.; do Bonfim Costa, J.d.C.; de Carvalho, L.G.; Alves, L.S. Adaptive neuro-fuzzy inference systems for epidemiological analysis of soybean rust. Environ. Model. Softw. 2011, 26, 1089–1096. [Google Scholar] [CrossRef]
- Zagui, N.L.S.; Krindges, A.; Lotufo, A.D.P.; Minussi, C.R. Spatio-Temporal Modeling and Simulation of Asian Soybean Rust Based on Fuzzy System. Sensors 2022, 22, 668. [Google Scholar] [CrossRef]
- Yu, M.; Ma, X.; Guan, H. Recognition method of soybean leaf diseases using residual neural network based on transfer learning. Ecol. Inform. 2023, 76, 102096. [Google Scholar] [CrossRef]
- Ponte, E.M.D.; Godoy, C.V.; Li, X.; Yang, X.B. Models and applications for risk assessment and prediction of asian soybean rust epidemics. Fitopatol. Bras. 2006, 31, 533–544. [Google Scholar] [CrossRef]
- Simionato, R.; Torres Neto, J.R.; Santos, C.J.d.; Ribeiro, B.S.; Araújo, F.C.B.d.; Paula, A.R.d.; Oliveira, P.A.d.L.; Fernandes, P.S.; Yi, J.H. Survey on connectivity and cloud computing technologies: State-of-the-art applied to Agriculture 4.0. Rev. Ciênc. Agrôn. 2021, 51, e20207755. [Google Scholar] [CrossRef]
- de Oliveira, C.F.; Nanni, M.R.; Furuya, D.E.G.; de Souza, B.A.M.; Antunes, J.F.G. Detecting soybean rust in different phenological stages by vegetation indices from multi-satellite data. Comput. Electron. Agric. 2023, 210, 107923. [Google Scholar] [CrossRef]
- González-Domínguez, E.; Caffi, T.; Rossi, V.; Salotti, I.; Fedele, G. Plant disease models and forecasting: Changes in principles and applications over the last 50 years. Phytopathology® 2023, 113, 678–693. [Google Scholar] [CrossRef]
- Jeger, M.; Madden, L.; Van Den Bosch, F. Plant virus epidemiology: Applications and prospects for mathematical modeling and analysis to improve understanding and disease control. Plant Dis. 2018, 102, 837–854. [Google Scholar] [CrossRef] [PubMed]
- Garin, G.; Fournier, C.; Andrieu, B.; Houlès, V.; Robert, C.; Pradal, C. A modelling framework to simulate foliar fungal epidemics using functional–structural plant models. Ann. Bot. 2014, 114, 795–812. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhang, S.; Zhai, Z.; Yu, H.; Xu, H. DC2Net: An Asian soybean rust detection model based on hyperspectral imaging and deep learning. Plant Phenomics 2024, 6, 0163. [Google Scholar] [CrossRef]
- Khalili, E.; Kouchaki, S.; Ramazi, S.; Ghanati, F. Machine learning techniques for soybean charcoal rot disease prediction. Front. Plant Sci. 2020, 11, 590529. [Google Scholar] [CrossRef]
- Li, W.; Guo, Y.; Yang, W.; Huang, L.; Zhang, J.; Peng, J.; Lan, Y. Severity Assessment of Cotton Canopy Verticillium Wilt by Machine Learning Based on Feature Selection and Optimization Algorithm Using UAV Hyperspectral Data. Remote Sens. 2024, 16, 4637. [Google Scholar] [CrossRef]
- Godoy, C.V.; Seixas, C.D.S.; Soares, R.M.; Marcelino-Guimarães, F.C.; Meyer, M.C.; Costamilan, L.M. Asian soybean rust in Brazil: Past, present, and future. Pesqui. Agropecu. Bras. 2016, 51, 407–421. [Google Scholar] [CrossRef]
- Neves, R.A.; Cruvinel, P.E. Application of Image Processing and Advanced Intelligent Computing for Determining Stage of Asian Rust in Soybean Plants. In Proceedings of the 2022 IEEE 16th International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 26–28 January 2022; pp. 280–286. [Google Scholar]
- Abbas, A.; Zhang, Z.; Zheng, H.; Alami, M.M.; Alrefaei, A.F.; Abbas, Q.; Naqvi, S.A.H.; Rao, M.J.; Mosa, W.F.; Abbas, Q.; et al. Drones in plant disease assessment, efficient monitoring, and detection: A way forward to smart agriculture. Agronomy 2023, 13, 1524. [Google Scholar] [CrossRef]
- Embrapa Soja. Digipathos Repository—Embrapa Soybean. 2021. Available online: https://www.digipathos-rep.cnptia.embrapa.br/ (accessed on 12 February 2021). (In Portuguese).
- Instituto Nacional de Meteorologia (INMET). Meteorological Database for Teaching and Research. 2019. Available online: https://portal.inmet.gov.br (accessed on 3 July 2019). (In Portuguese)
- Embrapa Soja Soy in Numbers (2019/20 Season). 2023. Available online: https://www.embrapa.br/web/portal/soja/cultivos/soja1/dados-economicos (accessed on 21 September 2023). (In Portuguese).
- Barbedo, J.G.A.; Koenigkan, L.V.; Halfeld-Vieira, B.A.; Costa, R.V.; Nechet, K.L.; Godoy, C.V.; Junior, M.L.; Patricio, F.R.A.; Talamini, V.; Chitarra, L.G.; et al. Annotated Plant Pathology Databases for Image-Based Detection and Recognition of Diseases. IEEE Lat. Am. Trans. 2018, 16, 1749–1757. [Google Scholar] [CrossRef]
- Yanowitz, S.D.; Bruckstein, A.M. A New Method for Image Segmentation. Comput. Vision Graph. Image Process. 1989, 46, 82–95. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Pearson Education do Brasil: São Paulo, Brazil, 2010. (In Portuguese) [Google Scholar]
- Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar] [CrossRef]
- Preedanan, W.; Kondo, T.; Bunnun, P.; Kumazawa, I. A Comparative Study of Image Quality Assessment. In Proceedings of the 2018 International Workshop on Advanced Image Technology (IWAIT), Chiang Mai, Thailand, 7–9 January 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Sara, U.; Akter, M.; Uddin, M.S. Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef]
- Lowe, D.G. Object Recognition from Local Scale-Invariant Features. In Proceedings of the Seventh IEEE International Conference on Computer Vision (ICCV), Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [Google Scholar] [CrossRef]
- Hu, M.K. Visual Pattern Recognition by Moment Invariants. IRE Trans. Inf. Theory 1962, 8, 179–187. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, J. Study of Feature Extraction Based Visual Invariance and Species Identification of Weed Seeds. In Proceedings of the 2010 Sixth International Conference on Natural Computation (ICNC), Yantai, China, 10–12 August 2010; Volume 2, pp. 631–635. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Information Science and Statistics; Springer: New York, NY, USA, 1999. [Google Scholar]
- Faceli, K.; Lorena, A.C.; Gama, J.; Carvalho, A.C.P.L.F. Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina; LTC: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- da Silva, G.; Ferreira, A.; Guilherme, D.; Grigolli, J.F.; Weber, V.; Pistori, H. Recognition of Soybean Diseases Using Machine Learning Techniques Based on Segmentation of Images Captured by UAVs. In Proceedings of the 16th Workshop on Computer Vision (WVC), Virtual, 7–10 November 2020; Brazilian Computer Society (SBC): Petrapolis, Brazil, 2020; pp. 12–17. (In Portuguese) [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; A comprehensive reference for the following metrics: Variance, standard deviation, precision, recall, F1-score, and ROC/AUC; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Karhunen, K. Über Lineare Methoden in der Wahrscheinlichkeitsrechnung; Annales Academiae Scientiarum Fennicae; Series A. I. Mathematica-Physica; Suomalainen Tiedeakatemia: Helsinki, Finland, 1947. [Google Scholar]
- Hotelling, H. Analysis of a Complex of Statistical Variables into Principal Components. J. Educ. Psychol. 1933, 24, 417. [Google Scholar] [CrossRef]
- Klema, V.; Laub, A. The Singular Value Decomposition: Its Computation and Some Applications. IEEE Trans. Autom. Control 1980, 25, 164–176. [Google Scholar] [CrossRef]
- Greville, T.N.E. Theory and Applications of Spline Functions; Army Mathematics Research Center: Madison, WI, USA; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Boudaren, M.E.Y.; Pieczynski, W. Dempster–Shafer Fusion of Evidential Pairwise Markov Chains. IEEE Trans. Fuzzy Syst. 2016, 24, 1598–1610. [Google Scholar] [CrossRef]
- Li, Y.; Jha, D.K.; Ray, A.; Wettergren, T.A. Information-Theoretic Performance Analysis of Sensor Networks via Markov Modeling of Time Series Data. IEEE Trans. Cybern. 2017, 48, 1898–1909. [Google Scholar] [CrossRef]
- Neves, R.A. Cloud-Based Computer Vision and Intelligence System for Asian Rust Risk Management in Soybean Crops. Ph.D. Thesis, Federal University of São Carlos, São Carlos, Brazil, 2024. (In Portuguese). [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Jang, J.S.R.; Sun, C.T.; Mizutani, E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Pedrycz, W. Why triangular membership functions? Fuzzy Sets Syst. 1994, 64, 21–30. [Google Scholar] [CrossRef]
- Prokopowicz, P.; Czerniak, J.; Mikołajewski, D.; Apiecionek, Ł.; Ślęzak, D. (Eds.) Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosiński; Studies in Fuzziness and Soft Computing; Springer International Publishing: Cham, Switzerland, 2017; Volume 355. [Google Scholar] [CrossRef]
- Mamdani, E.; Assilian, S. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. Int. J.-Hum.-Comput. Stud. 1999, 51, 135–147. [Google Scholar] [CrossRef]
- Scikit-Fuzzy. Version 0.4.2. Python Software. 2019. Available online: https://doi.org/10.5281/zenodo.3541386 (accessed on 21 June 2025).
- Baum, L.E.; Petrie, T. Statistical Inference for Probabilistic Functions of Finite State Markov Chains. Ann. Math. Stat. 1966, 37, 1554–1563. [Google Scholar] [CrossRef]
- Baum, L.E.; Eagon, J.A. An Inequality with Applications to Statistical Estimation for Probabilistic Functions of Markov Processes and to a Model for Ecology. Bull. Am. Math. Soc. 1967, 73, 360–363. [Google Scholar] [CrossRef]
- Markov, A. Extension of the Limit Theorems of Probability Theory to a Sum of Variables Connected in a Chain. In Dynamical Probabilistic Systems; Iosifescu, M., Ed.; English translation of the original 1906 Russian publication; John Wiley & Sons: Hoboken, NJ, USA, 1971; Volume 1, p. 552. [Google Scholar]
- Ching, W.K.; Ng, M.K. Markov Chains: Models, Algorithms and Applications; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Berg, B.A. Markov Chain Monte Carlo Simulations and Their Statistical Analysis: With Web-Based Fortran Code; World Scientific Publishing Company: Singapore, 2004. [Google Scholar]
ID | Description of Variables | Physical Quantity |
---|---|---|
Leaf Wetness Period | Percentage (%) | |
Minimum Leaf Wetness Period | Millimeters (mm) | |
Temperature Range | Degrees Celsius (°C) | |
Maximum Temperature | Degrees Celsius (°C) | |
Minimum Temperature | Degrees Celsius (°C) | |
Dew Point | Degrees Celsius (°C) | |
Image Classification Data | Classification Unit (0 or 1) |
Climatic Conditions for Asian Soybean Rust Favorability | ||
---|---|---|
Description | Variable | Estimated Value |
Known Climatological Data | ||
Leaf Wetness Period | Hours Quantity | Relative humidity greater than or equal to 90% |
Dew Point | Temperature | Difference less than 2 °C |
Temperature Range Favorable for Fungus Development | Temperature | Range between 18 °C and 25 °C |
Minimum and Maximum Temperature during Leaf Wetness Period | Temperature Range | Range between 18 °C and 26.5 °C |
Minimum Leaf Wetness Period | Time | 6 h |
New Presented Data | ||
Soybean Leaf Cultivar Data | Classification | Pixel analysis |
Phenomenology of Asian Soybean Rust Problem | Discovery of Color Classes | Analysis of green, yellow, and brown pixels |
Disease Stage Identification | Percentage occurrence of classes | Quantity of pixels for each class |
Favorability Probability | Set of variables from indicators | Low, Median, and High |
If | Favorability | Combinations |
---|---|---|
If Favorability is TRUE for up to two variables THEN 1 option: V1 or V2 or V3 or V4 or V5 or V6 or V7 | Low | 1 |
If Favorability is TRUE for up to two variables THEN 2 options: V1 or group (V2 or V3 or V4 or V5 or V6 or V7) | Low | 8 |
If Favorability is TRUE for up to four variables THEN 3 options: V1 AND V2 AND group (V3 or V4 or V5 or V6 or V7) | Medium | 21 |
If Favorability is TRUE for up to four variables THEN 4 options: V1 AND V2 AND V3 AND group (V4 or V5 or V6 or V7) | Medium | 35 |
If Favorability is TRUE for more than four variables THEN 5 options: V1 AND V2 AND V3 AND V4 AND group (V5 or V6 or V7) | High | 35 |
If Favorability is TRUE for more than four variables THEN 6 options: V1 AND V2 AND V3 AND V4 AND V5 AND group (V6 or V7) | High | 20 |
N. | Precip. | Max. Temp. | Min. Temp. | Relative Humidity | Dew Point | Comp. Average Temperature | Status |
---|---|---|---|---|---|---|---|
1 | 4.20 | 35.50 | 24.00 | 72.75 | 23.08 | 28.44 | Original |
2 | 0.00 | 32.50 | 24.40 | 88.75 | 23.80 | 25.80 | Original |
3 | 18.00 | 33.30 | 22.50 | 79.00 | 22.85 | 26.80 | Original |
4 | 0.00 | 33.00 | 23.20 | 84.00 | 22.62 | 25.52 | Original |
5 | 0.00 | 33.60 | 23.80 | 88.25 | 24.02 | 26.12 | Original |
6 | 3.00 | 34.50 | 23.40 | 83.00 | 23.06 | 26.18 | Original |
7 | 0.00 | 33.50 | 24.00 | 84.25 | 23.47 | 26.34 | Original |
8 | 4.20 | 35.50 | 24.00 | 72.80 | 23.10 | 28.40 | Interpolated |
9 | 6.10 | 32.80 | 24.90 | 88.70 | 23.80 | 25.90 | Interpolated |
10 | 5.40 | 32.60 | 23.90 | 86.80 | 23.70 | 26.00 | Interpolated |
Segmented Images | Metrics | Outliers | |||
---|---|---|---|---|---|
MSE | PSNR (dB) | SSIM | Seeds | Calculation | |
Green | 0.05 | 13.35 | 0.91 | 0 | 3 |
Yellow | 0.06 | 12.59 | 0.91 | 14 | 14 |
Brown | 0.05 | 12.94 | 0.91 | 1 | 1 |
PC | Eigenvalue | % of Variance | Cumulative Variance (%) |
---|---|---|---|
1 | 0.64 | 12.30 | 12.30 |
2 | 0.57 | 11.02 | 23.31 |
3 | 0.33 | 6.33 | 29.65 |
4 | 0.28 | 6.28 | 35.93 |
5 | 0.28 | 5.31 | 41.24 |
6 | 0.18 | 3.56 | 44.79 |
7 | 0.18 | 3.59 | 48.18 |
8 | 0.13 | 2.79 | 50.97 |
9 | 0.14 | 2.56 | 53.53 |
10 | 0.12 | 2.47 | 56.00 |
11 | 0.13 | 2.57 | 58.52 |
12 | 0.11 | 1.87 | 60.39 |
13 | 0.09 | 1.63 | 62.02 |
14 | 0.09 | 1.65 | 63.66 |
15 | 0.08 | 1.57 | 65.23 |
16 | 0.08 | 1.54 | 66.76 |
17 | 0.07 | 1.41 | 68.17 |
18 | 0.06 | 1.31 | 69.48 |
19 | 0.06 | 1.23 | 70.79 |
Polynomial Kernel Settings |
---|
kernel: polynomial, Degree: 3, 5, 7, Parameters C: 1, 10, 100, 1000, Gamma: 0.001; 0.01; 0.1; 1, Class_Weight: (balanced, 0: 0.1 | 1: 0.9) |
RBF Kernel Settings |
kernel: RBF, Degree: 3, 5, 7, Parameters C: 1, 10, 100, Gamma: 0.001; 0.01; 0.1; 1, Weight: (0: 0.3 | 1: 0.7) (0: 0.1 | 1: 0.9) |
Linear Kernel Settings |
kernel: linear, Parameters C: 1, 10, 100, Gamma: 0.01; 0.1; 1, Class_Weight: (0: 0.1|1: 0.9) |
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
0 | 0.88 | 0.50 | 0.64 | 692 |
1 | 0.79 | 0.96 | 0.87 | 1361 |
Accuracy | 0.81 | 2053 | ||
Macro Average | 0.83 | 0.73 | 0.75 | 2053 |
Weighted Average | 0.82 | 0.81 | 0.79 | 2053 |
Descriptive Statistics | Configuration 80-20 | Configuration 70-30 | Configuration 50-50 | ||||||
---|---|---|---|---|---|---|---|---|---|
Acc. | MSE | AUC | Acc. | MSE | AUC | Acc. | MSE | AUC | |
SVM Classifier—Linear Kernel | |||||||||
Minimum | 0.692 | 0.000 | 0.440 | 0.684 | 0.000 | 0.480 | 0.687 | 0.000 | 0.490 |
Maximum | 1.000 | 0.308 | 0.690 | 1.000 | 0.316 | 0.690 | 1.000 | 0.313 | 0.640 |
Mean | 0.787 | 0.213 | 0.587 | 0.792 | 0.208 | 0.588 | 0.777 | 0.223 | 0.583 |
Standard Error | 0.011 | 0.011 | 0.008 | 0.011 | 0.011 | 0.006 | 0.011 | 0.011 | 0.003 |
Variance | 0.008 | 0.008 | 0.004 | 0.007 | 0.007 | 0.002 | 0.007 | 0.007 | 0.001 |
Standard Dev. | 0.089 | 0.089 | 0.062 | 0.085 | 0.085 | 0.050 | 0.085 | 0.085 | 0.025 |
Median | 0.750 | 0.250 | 0.590 | 0.761 | 0.239 | 0.590 | 0.741 | 0.259 | 0.590 |
25th Percentile | 0.731 | 0.167 | 0.540 | 0.729 | 0.179 | 0.550 | 0.724 | 0.212 | 0.570 |
75th Percentile | 0.833 | 0.269 | 0.640 | 0.821 | 0.271 | 0.620 | 0.788 | 0.276 | 0.600 |
SVM Classifier—Polynomial Kernel | |||||||||
Minimum | 0.692 | 0.000 | 0.820 | 0.795 | 0.034 | 0.800 | 0.769 | 0.041 | 0.800 |
Maximum | 1.000 | 0.308 | 1.000 | 0.966 | 0.205 | 1.000 | 0.959 | 0.231 | 0.990 |
Mean | 0.790 | 0.210 | 0.917 | 0.860 | 0.140 | 0.916 | 0.844 | 0.156 | 0.900 |
Standard Error | 0.011 | 0.011 | 0.006 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 |
Variance | 0.008 | 0.008 | 0.002 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 |
Standard Dev. | 0.088 | 0.088 | 0.043 | 0.042 | 0.042 | 0.039 | 0.036 | 0.036 | 0.039 |
Median | 0.756 | 0.244 | 0.915 | 0.850 | 0.150 | 0.910 | 0.841 | 0.159 | 0.900 |
25th Percentile | 0.731 | 0.167 | 0.900 | 0.829 | 0.128 | 0.890 | 0.815 | 0.133 | 0.870 |
75th Percentile | 0.833 | 0.269 | 0.948 | 0.872 | 0.171 | 0.940 | 0.867 | 0.185 | 0.928 |
SVM Classifier—RBF Kernel | |||||||||
Minimum | 0.709 | 0.000 | 0.570 | 0.709 | 0.000 | 0.570 | 0.687 | 0.000 | 0.460 |
Maximum | 1.000 | 0.291 | 1.000 | 1.000 | 0.291 | 1.000 | 1.000 | 0.313 | 1.000 |
Mean | 0.794 | 0.206 | 0.820 | 0.794 | 0.206 | 0.820 | 0.779 | 0.221 | 0.769 |
Standard Error | 0.011 | 0.011 | 0.015 | 0.011 | 0.011 | 0.015 | 0.011 | 0.011 | 0.018 |
Variance | 0.007 | 0.007 | 0.014 | 0.007 | 0.007 | 0.014 | 0.007 | 0.007 | 0.020 |
Standard Dev. | 0.084 | 0.084 | 0.119 | 0.084 | 0.084 | 0.119 | 0.084 | 0.084 | 0.143 |
Median | 0.765 | 0.235 | 0.830 | 0.765 | 0.235 | 0.830 | 0.744 | 0.256 | 0.755 |
25th Percentile | 0.729 | 0.173 | 0.713 | 0.729 | 0.173 | 0.713 | 0.728 | 0.210 | 0.653 |
75th Percentile | 0.827 | 0.271 | 0.930 | 0.827 | 0.271 | 0.930 | 0.790 | 0.272 | 0.878 |
Hyperparameters | Values |
---|---|
C | 100 |
Weight (Class 0) | 0.3 |
Weight (Class 1) | 0.7 |
Degree | 3 |
Gamma | 0.1 |
Description | Configuration |
---|---|
Antecedent: Leaf Wetness Period | |
Humidity below threshold | 0, 43, 89 |
Humidity at threshold | 88, 90, 94 |
Humidity above threshold | 93, 96, 100 |
Antecedent: Minimum Leaf Wetness Period | |
Time below threshold | 0, 14, 24 |
Time at threshold | 22, 46, 70 |
Time above threshold | 66, 83, 100 |
Antecedent: Soybean Leaf Image Classification Data | |
Unfavorable | 0, 0, 1 |
Favorable | 1, 1, 1 |
Antecedent: Dew Point | |
Temperature below threshold | −2, −1, 0 |
Temperature at threshold | 0, 1, 2 |
Temperature above threshold | 2, 3, 4 |
Antecedent: Temperature Range | |
Initial: range below threshold | 0, 7, 15 |
Initial: range at threshold | 14.4, 18, 21.4 |
Initial: range above threshold | 21, 24, 27 |
Final: range below threshold | 14, 19, 24 |
Final: range at threshold | 23.4, 26, 28.4 |
Final: range above threshold | 28, 36, 44 |
Antecedent: Minimum Temperature | |
Minimum temperature below threshold | 0, 7, 15 |
Minimum temperature at threshold | 14, 18, 22 |
Minimum temperature above threshold | 21, 24, 27 |
Antecedent: Maximum Temperature | |
Maximum temperature below threshold | 14, 19, 24 |
Maximum temperature at threshold | 23, 26, 28 |
Maximum temperature above threshold | 27, 35, 43 |
Consequent: Favorability | |
Low | 0, 17.15, 33.3 |
Medium | 32.3, 50, 67.6 |
High | 66.6, 84, 100 |
C | S | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
4 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 |
5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
9 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
10 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.50 |
11 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.50 | 0.00 |
12 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.33 | 0.33 |
13 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 |
14 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 0.00 | 0.00 | 0.00 | 0.33 | 0.33 | 0.00 | 0.33 |
15 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 2 | 0.00 | 0.00 | 0.00 | 0.33 | 0.33 | 0.33 | 0.00 |
16 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 0.00 | 0.00 | 0.00 | 0.25 | 0.25 | 0.25 | 0.25 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
128 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
Input (Algorithm) | |||||||
---|---|---|---|---|---|---|---|
Occurrences: | 7 | 6 | 0 | 1 | 1 | 1 | 1 |
Transformed Occurrences: | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
Selected Hidden Chain: | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
Selected Probability: | 0.17 | 0.17 | 0.0 | 0.17 | 0.17 | 0.17 | 0.17 |
State (S): | 3 | ||||||
Favorability: | High |
Favorability | Accuracy | Precision | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1.00 | 0.12 | 0.35 | 0.88 | 0.65 | |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1.00 | 0.12 | 0.35 | 0.88 | 0.65 | |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 1.00 | 0.20 | 0.45 | 0.80 | 0.55 | |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1.00 | 0.12 | 0.35 | 0.88 | 0.65 | |
Median | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1.00 | 0.24 | 0.49 | 0.76 | 0.51 |
0 | 0 | 0 | 1 | 0 | 1 | 1 | 1.00 | 0.24 | 0.49 | 0.76 | 0.51 | |
0 | 0 | 0 | 1 | 1 | 0 | 1 | 1.00 | 0.24 | 0.49 | 0.76 | 0.51 | |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 1.00 | 0.24 | 0.49 | 0.76 | 0.51 | |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1.00 | 0.24 | 0.49 | 0.76 | 0.51 | |
High | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1.00 | 0.20 | 0.45 | 0.80 | 0.55 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 1.00 | 0.20 | 0.45 | 0.80 | 0.55 | |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1.00 | 0.12 | 0.35 | 0.88 | 0.65 | |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 1.00 | 0.20 | 0.45 | 0.80 | 0.55 | |
1 | 1 | 0 | 1 | 1 | 1 | 1 | 1.00 | 0.12 | 0.35 | 0.88 | 0.65 |
Favorability Analysis—Evaluation | ||||||
---|---|---|---|---|---|---|
Fuzzy Logic (Category) | Scenario 1 | Scenario 2 | ||||
Samples | Correct (Count) | Accuracy (%) | Samples | Correct (Count) | Accuracy (%) | |
Low Favorability | 29 | 8 | 27.59 | 0 | N/A | N/A |
Medium Favorability | 29 | 12 | 41.38 | 41 | 25 | 60.98 |
High Favorability | 29 | 18 | 62.07 | 0 | N/A | N/A |
Hidden Markov Model (Category) | Samples | Correct (Count) | Accuracy (%) | Samples | Correct (Count) | Accuracy (%) |
Low Favorability | 29 | 29 | 100.00 | 0 | N/A | N/A |
Medium Favorability | 29 | 29 | 100.00 | 41 | 41 | 100.00 |
High Favorability | 29 | 29 | 100.00 | 0 | N/A | N/A |
Process | Processing (%) | Memory (%) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Min. | Max. | Mean | Std. Dev. | Min. | Max. | |
Segmentation | 76.24 | 2.10 | 75.10 | 81.10 | 11.18 | 0.44 | 9.80 | 11.40 |
Feature Extraction with PCA | 27.51 | 22.06 | 5.30 | 75.10 | 8.52 | 0.65 | 7.90 | 9.70 |
Machine Learning | 90.55 | 3.51 | 83.80 | 94.10 | 10.95 | 0.52 | 10.40 | 11.60 |
Variable Data Fusion | 89.26 | 3.49 | 83.80 | 94.10 | 10.96 | 0.51 | 10.40 | 11.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, R.A.; Cruvinel, P.E. A Cloud-Based Intelligence System for Asian Rust Risk Analysis in Soybean Crops. AgriEngineering 2025, 7, 236. https://doi.org/10.3390/agriengineering7070236
Neves RA, Cruvinel PE. A Cloud-Based Intelligence System for Asian Rust Risk Analysis in Soybean Crops. AgriEngineering. 2025; 7(7):236. https://doi.org/10.3390/agriengineering7070236
Chicago/Turabian StyleNeves, Ricardo Alexandre, and Paulo Estevão Cruvinel. 2025. "A Cloud-Based Intelligence System for Asian Rust Risk Analysis in Soybean Crops" AgriEngineering 7, no. 7: 236. https://doi.org/10.3390/agriengineering7070236
APA StyleNeves, R. A., & Cruvinel, P. E. (2025). A Cloud-Based Intelligence System for Asian Rust Risk Analysis in Soybean Crops. AgriEngineering, 7(7), 236. https://doi.org/10.3390/agriengineering7070236