AIM-Net: A Resource-Efficient Self-Supervised Learning Model for Automated Red Spider Mite Severity Classification in Tea Cultivation
Abstract
Share and Cite
Kanagarajan, M.; Natarajan, M.; Rajendran, S.; Velusamy, P.; Ganesan, S.K.; Bose, M.; Sakthivel, R.; Stephen Inbaraj, B. AIM-Net: A Resource-Efficient Self-Supervised Learning Model for Automated Red Spider Mite Severity Classification in Tea Cultivation. AgriEngineering 2025, 7, 247. https://doi.org/10.3390/agriengineering7080247
Kanagarajan M, Natarajan M, Rajendran S, Velusamy P, Ganesan SK, Bose M, Sakthivel R, Stephen Inbaraj B. AIM-Net: A Resource-Efficient Self-Supervised Learning Model for Automated Red Spider Mite Severity Classification in Tea Cultivation. AgriEngineering. 2025; 7(8):247. https://doi.org/10.3390/agriengineering7080247
Chicago/Turabian StyleKanagarajan, Malathi, Mohanasundaram Natarajan, Santhosh Rajendran, Parthasarathy Velusamy, Saravana Kumar Ganesan, Manikandan Bose, Ranjithkumar Sakthivel, and Baskaran Stephen Inbaraj. 2025. "AIM-Net: A Resource-Efficient Self-Supervised Learning Model for Automated Red Spider Mite Severity Classification in Tea Cultivation" AgriEngineering 7, no. 8: 247. https://doi.org/10.3390/agriengineering7080247
APA StyleKanagarajan, M., Natarajan, M., Rajendran, S., Velusamy, P., Ganesan, S. K., Bose, M., Sakthivel, R., & Stephen Inbaraj, B. (2025). AIM-Net: A Resource-Efficient Self-Supervised Learning Model for Automated Red Spider Mite Severity Classification in Tea Cultivation. AgriEngineering, 7(8), 247. https://doi.org/10.3390/agriengineering7080247