Postharvest Physiology and Technology of Horticultural Crops—2nd Edition

A special issue of Agriculture (ISSN 2077-0472). This special issue belongs to the section "Agricultural Product Quality and Safety".

Deadline for manuscript submissions: closed (20 December 2024) | Viewed by 4598

Special Issue Editor


E-Mail Website
Guest Editor
Department of Agricultural, Food, and Environmental Sciences (DSA3), University of Perugia, Via Borgo XX Giugno 74, 06121 Perugia, Italy
Interests: mechanical harvest; breeding and clonal selection of new varieties; abiotic stress; fruit growth; ripening indexes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Post-harvest losses in fruits and vegetables are very high. About 30% of fresh fruits and vegetables shrivel and decay, lowering their market value and consumer acceptability.

Improper handling during harvest and transportation storage cause physical damage due to tissue breakdown. Mechanical losses include bruising, cracking, cuts, and microbial damage, whereas physiological losses include changes in respiration, transpiration, pigments, organic acids, and flavor.

Loss occurs mainly after harvesting, but it starts first from the field, during harvest (both manual and mechanical), after harvest, in storage, and during transportation. Once fruit is harvested, postharvest handling practices cannot improve the quality attained in the field; they only can slow the rate at which deterioration occurs. Therefore, the postharvest quality and shelf life of fruit produce are also determined before harvest and can be affected by plant–environment interactions. Moreover, cultivation systems, such as high-density plantations, can affect the quality of fruit and affect its shelf-life.

This Special Issue is a natural continuation of our previous Special Issue: “Postharvest Physiology and Technology of Horticultural Crops”. The aim of this Special Issue is to provide a multi-technique approach to explore fruit quality variability during and after harvest in relation to plant–environment interactions.

Dr. Daniela Farinelli
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agriculture is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fruit storage
  • environment
  • fruit damage and quality parameters
  • genotypes
  • high-density orchard
  • mechanical harvest
  • preharvest practices
  • postharvest practices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 4382 KiB  
Article
Vibration Mitigation in the Transport of Fruit Boxes Using 3D-Printed Devices
by Pedro Sanchez-Cachinero, Cristina Aguilar-Porro and Rafael R. Sola-Guirado
Agriculture 2025, 15(2), 131; https://doi.org/10.3390/agriculture15020131 - 9 Jan 2025
Viewed by 1064
Abstract
The transport of freshly post-harvested fruit to its collection point is mainly achieved using trailers over uneven terrain, which generates impacts and vibrations that negatively affect the quality of the fruit. Although some solutions to mitigate these effects have been proposed in previous [...] Read more.
The transport of freshly post-harvested fruit to its collection point is mainly achieved using trailers over uneven terrain, which generates impacts and vibrations that negatively affect the quality of the fruit. Although some solutions to mitigate these effects have been proposed in previous studies, none of them are applied directly to the source of the problem, i.e., the transport boxes. In this context, metamaterial sheets inspired by the design of quasi-zero stiffness isolators (QZSs) open up the possibility of exploring ways of vibration isolation thanks to their associated nonlinear characteristics. In this work, ABS sheets with different internal geometries were manufactured and compared as possible bottoms of transport boxes. Vibration reduction not only protects the physical integrity of the fruit, avoiding visible damage such as bumps or bruises, but also preserves its chemical properties, such as texture and freshness, which directly impacts its shelf life and presentation for sale. The design variables analyzed for these geometries included the number of ribs, their thickness and their angle of inclination. In these specimens, their behavior to impact-type forces and their experimental dynamic behavior were studied using an electromagnetic shaker against a sinusoidal signal and against the uniaxial vibration recorded at the base of a trailer in a real rural route. The results showed that the specimens with a rib angle of 30° and a thickness of 0.4 mm showed the best impact performance and a higher amplification of vibration transmissibility in the steady state. In the presence of the signal recorded on the route, transmissibility reduction percentages between 13% and 19% were obtained in the principal acceleration impact. Full article
Show Figures

Figure 1

11 pages, 3173 KiB  
Article
Effects of Rainfall and Harvest Time on Postharvest Storage Performance of ‘Redson’ Fruit: A New Red Pomelo x Grapefruit Hybrid
by Leanne Salto, Itay Maoz, Livnat Goldenberg, Nir Carmi and Ron Porat
Agriculture 2024, 14(10), 1836; https://doi.org/10.3390/agriculture14101836 - 18 Oct 2024
Cited by 1 | Viewed by 1044
Abstract
‘Redson’ is a new triploid, red-fleshed pomelo x grapefruit hybrid. The goal of this study was to examine the effects of rainfall, harvest time, tree age, and yield on the postharvest storage performance of ‘Redson’ fruit. During 2022/23, two postharvest storage trials were [...] Read more.
‘Redson’ is a new triploid, red-fleshed pomelo x grapefruit hybrid. The goal of this study was to examine the effects of rainfall, harvest time, tree age, and yield on the postharvest storage performance of ‘Redson’ fruit. During 2022/23, two postharvest storage trials were conducted with early- and late-harvested fruit. The fruit from the early harvest retained good quality for up to 16 weeks of storage at 7.5 °C plus 1 week at 22 °C, whereas the late-harvested fruit suffered from a high decay incidence. During 2023/24, we expanded the postharvest trials to nine different fruit sets harvested from early season (late October) until the end of the season (January). Fruit quality was examined under the same storage conditions after 6 and 16 weeks, and the results indicated that early- and mid-season fruit retained good quality with minimal decay incidence even after prolonged storage for 16 weeks, whereas the late-season fruit suffered from significant decay incidences of 17–22% and a decline in flavor acceptability. Further analysis revealed strong and significant correlations between various rainfall parameters and harvest time and decay incidences. Overall, early-harvested fruit during the autumn had a superior postharvest storage performance, whereas late-harvested fruit during the rainy winter suffered from decay development. Full article
Show Figures

Figure 1

16 pages, 3284 KiB  
Article
Influence of Tea Polyphenols, Chitosan, and Melatonin as the Eco-Friendly Post-Harvest Treatments on the Vase Life of the Cut Chrysanthemum ‘Pingpong’ Group
by Ziyi Yu, Shuangda Li and Yan Hong
Agriculture 2024, 14(9), 1507; https://doi.org/10.3390/agriculture14091507 - 2 Sep 2024
Cited by 1 | Viewed by 1724
Abstract
Vase life is a decisive measure of the marketability of post-harvest physiology in cut flowers. In the process of petal senescence, the cut chrysanthemum (Chrysanthemum × morifolium) ‘Pingpong’ group develops severe capitulum collapse which manifests as wilting and browning, leading to [...] Read more.
Vase life is a decisive measure of the marketability of post-harvest physiology in cut flowers. In the process of petal senescence, the cut chrysanthemum (Chrysanthemum × morifolium) ‘Pingpong’ group develops severe capitulum collapse which manifests as wilting and browning, leading to shorter vase life. Melatonin (MT), tea polyphenols (TPs), and chitosan (CT) are natural alternatives to chemical compounds with proven preservation effects. In this study, the possibility of mitigating capitulum collapse using the preservation solutions of these three eco-friendly ingredients was investigated on four varieties from the ‘Pingpong’ group, aiming to delay the senescence process. The effects on vase life of 0.02/0.04 mmol·L−1 MT, 200/400 mg·L−1 TPs, and 0.10/0.20 g·L−1 CT were, respectively, assessed with the basis of 20 g·L−1 sucrose and 250 mg·L−1 citric acid. The yellow and white varieties tend to have a longer vase life compared with the green and pink varieties. Compared to the control with only base ingredients, the greatest delay in capitulum collapse was observed with 0.04 mmol·L−1 MT in the yellow variety, maximizing the vase life to 13.4 days. MT maintained the best ornamental quality of the capitulum by decelerating fresh weight and flower diameter loss in terms of all varieties. TPs significantly increased flower diameter to improve vase life up to four more days. However, CT caused significant negative effects on vase life, with severe loss of both flower diameter and fresh weight. Therefore, the application of 0.04 mmol·L−1 MT and 200 mg·L−1 TPs was suggested to enhance the marketability of cut ‘Pingpong’, which highlighted the eco-friendly potential of post-harvest treatments. Full article
Show Figures

Figure 1

Back to TopTop