Aim: In sub-Saharan Africa, approximately 40 million pregnant women are exposed to parasitic diseases such as malaria caused by
Plasmodium falciparum, Schistosome parasites, and soil-transmitted helminths (STHs). When parasitic diseases share the same habitat and overlap in distribution, then high co-infection rates
[...] Read more.
Aim: In sub-Saharan Africa, approximately 40 million pregnant women are exposed to parasitic diseases such as malaria caused by
Plasmodium falciparum, Schistosome parasites, and soil-transmitted helminths (STHs). When parasitic diseases share the same habitat and overlap in distribution, then high co-infection rates occur. The co-infection can lead to consequences for the child, such as intrauterine growth retardation, low birth weight, pre-term delivery, and neonatal mortality. Methods: The objective of the study was to determine the nature and extent of coinfection from 100 samples collected from the Battor (50) and Adidome (50) towns of Ghana in collaboration with the Noguchi Memorial Institute for Medical Research, University of Ghana. Results: Out of 50 for the Adidome towns determined for
P. falciparum by Rapid Diagnostic Test (RDT), Malaria Pan-specific Antigen (PAN), and Malaria Pf kit, 39 were true positive (TP), 8 were true negative (TN), and 30 were false negative (FN). For Battor, 19 were TP, 12 TN, and 20 FN. For
S. mansoni in Adidome via polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP), 21 tested positive, and 29 were negative, with 52.5% sensitivity and 100% specificity. For
S. haematobium, 28 were positive and 22 negative using PCR with 70% sensitivity and 100% specificity. In LAMP, 28 were positive, and 22 negatives, with 70% sensitivity and 100% specificity. In Battor PCR for
S. mansoni, 28 positives and 22 negatives with 68.3% sensitivity and 100% specificity. In LAMP, 32 were positive, and 18 were negative, with 80% sensitivity and 100% specificity. For
S. haematobium, PCR showed 30 positive and 20 negative, with 73.2% sensitivity and 100% specificity. With LAMP, 21 were positive, and 29 negatives, with 51% sensitivity and 100% specificity. In both towns, 20–30 years had the highest infection prevalence for
P. falciparum,
S. mansoni,
S. haematobium, and
Strongyloides stercoralis. Conclusion: The results will be utilized as a part of the continuous surveillance for future research aiming at gathering nationally representative data in Ghana on the prevalence of coinfection and proposing interventions based on that for the vulnerable pregnant women population.
Full article