Human Impact on the Composition of Small-Intestine Helminth Infracommunities in Canine Mesocarnivores, with a Special Focus on Echinococcus multilocularis
Abstract
:1. Introduction
2. Material and Methods
2.1. Parasitological Investigation
2.2. Estimation of Human Impact
2.3. Data Analysis
- xj = the abundance of the j-th parasite species,
- S = the total number of parasite species (hereafter species richness) within the infracommunity,
- N = the total parasite abundance.
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veronesi, F.; Deak, G.; Diakou, A. Wild mesocarnivores as reservoirs of endoparasites causing important zoonoses and emerging bridging infections across Europe. Pathogens 2023, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Mackenstedt, U.; Jenkins, D.; Romig, T. The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. Int. J. Parasitol. Parasites Wildl. 2015, 4, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Ćirović, D.; Penezić, A.; Krofel, M. Jackals as cleaners: Ecosystem services provided by a mesocarnivore in human-dominated landscapes. Biol. Conserv. 2016, 199, 51–55. [Google Scholar] [CrossRef]
- Tsunoda, H.; Saito, M.U. Variations in the trophic niches of the golden jackal Canis aureus across the Eurasian continent associated with biogeographic and anthropogenic factors. J. Vertebr. Biol. 2020, 69, 20056. [Google Scholar] [CrossRef]
- Lapid, R.; Motro, Y.; Craddock, H.; Khalfin, B.; King, R.; Bar-Gal, G.K.; Moran-Gilad, J. Fecal microbiota of the synanthropic golden jackal (Canis aureus). Anim. Microbiome 2023, 5, 37. [Google Scholar] [CrossRef]
- Speer, K.A. Microbiomes mediate host–parasite interactions. Mol. Ecol. 2022, 31, 1925–1927. [Google Scholar] [CrossRef]
- Sugden, S.; Sanderson, D.; Ford, K.; Stein, L.Y.; St. Clair, C.C. An altered microbiome in urban coyotes mediates relationships between anthropogenic diet and poor health. Sci. Rep. 2020, 10, 22207. [Google Scholar] [CrossRef]
- Holland, C.V. A walk on the wild side: A review of the epidemiology of Toxocara canis and Toxocara cati in wild hosts. Int. J. Parasitol. Parasites Wildl. 2023, 22, 216–228. [Google Scholar] [CrossRef]
- Wilson, A.G.; Wilson, S.; Alavi, N.; Lapen, D.R. Human density is associated with the increased prevalence of a generalist zoonotic parasite in mammalian wildlife. Proc. R. Soc. B 2021, 288, 20211724. [Google Scholar] [CrossRef]
- Otranto, D.; Cantacessi, C.; Dantas-Torres, F.; Brianti, E.; Pfeffer, M.; Genchi, C.; Guberti, V.; Capelli, G.; Deplazes, P. The role of wild canids and felids in spreading parasites to dogs and cats in Europe. Part II: Helminths and arthropods. Vet. Parasitol. 2015, 213, 24–37. [Google Scholar] [CrossRef]
- Šálek, M.; Drahníková, L.; Tkadlec, E. Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient. Mamm. Rev. 2015, 45, 1–14. [Google Scholar] [CrossRef]
- O’Donnell, K.; delBarco-Trillo, J. Changes in the home range sizes of terrestrial vertebrates in response to urban disturbance: A meta-analysis. J. Urban Ecol. 2020, 6, juaa014. [Google Scholar] [CrossRef]
- Thompson, R.A. Parasite zoonoses and wildlife: One health, spillover and human activity. Int. J. Parasitol. 2013, 43, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Hofer, S.; Gloor, S.; Müller, U.; Mathis, A.; Hegglin, D.; Deplazes, P. High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zürich, Switzerland. Parasitology 2000, 120, 135–142. [Google Scholar] [CrossRef]
- Anderson, C.R.; Chabaud, A.G.; Willmott, S. Keys to the Nematode Parasites of Vertebrates: Archival Volume; CABI Publishing: Wallingford, UK, 2009; pp. 44–69, 309–324. [Google Scholar]
- Gibson, D.I.; Jones, A.; Bray, R.A. Keys to the Trematoda: Volume 1; CABI Publishing: Wallingford, UK, 2002; pp. 178–185. [Google Scholar]
- Khalil, L.F.; Jones, A.; Bray, R.A. Keys to the Cestode Parasites of Vertebrates; CABI Publishing: Wallingford, UK, 1994; pp. 309–315, 355–359, 665–673. [Google Scholar]
- Fenton, S.; Moorcroft, P.R.; Ćirović, D.; Lanszki, J.; Heltai, M.; Cagnacci, F.; Breck, S.; Bogdanović, N.; Pantelić, I.; Ács, K.; et al. Movement, space-use and resource preferences of European golden jackals in human-dominated landscapes: Insights from a telemetry study. Mamm. Biol. 2021, 101, 619–630. [Google Scholar] [CrossRef]
- Main, M.T.; Davis, R.A.; Blake, D.; Mills, H.; Doherty, T.S. Human impact overrides bioclimatic drivers of red fox home range size globally. Divers. Distrib. 2020, 26, 1083–1092. [Google Scholar] [CrossRef]
- Torretta, E.; Dondina, O.; Delfoco, C.; Riboldi, L.; Orioli, V.; Lapini, L.; Meriggi, A. First assessment of habitat suitability and connectivity for the golden jackal in north-eastern Italy. Mamm. Biol. 2020, 100, 631–643. [Google Scholar] [CrossRef]
- Bradley, C.A.; Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 2006, 22, 95–102. [Google Scholar] [CrossRef]
- Gecchele, L.V.; Pedersen, A.B.; Bell, M. Fine-scale variation within urban landscapes affects marking patterns and gastrointestinal parasite diversity in red foxes. Ecol. Evol. 2020, 10, 13796–13809. [Google Scholar] [CrossRef]
- Chakraborty, D.; Reddy, M.; Tiwari, S.; Umapathy, G. Land use change increases wildlife parasite diversity in Anamalai Hills, Western Ghats, India. Sci. Rep. 2019, 9, 11975. [Google Scholar] [CrossRef]
- Gibb, R.; Redding, D.W.; Chin, K.Q.; Donnelly, C.A.; Blackburn, T.M.; Newbold, T.; Jones, K.E. Zoonotic host diversity increases in human-dominated ecosystems. Nature 2020, 584, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Bonebrake, T.C.; Gibson, L. Land-use change alters host and vector communities and may elevate disease risk. EcoHealth 2019, 16, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, N.; Citterio, C.V.; Lanfranchi, P. Infracommunity crowding as an individual measure of interactive-isolationist degree of parasite communities: Disclosing the effects of extrinsic and host factors. Parasite Vectors 2016, 17, 88. [Google Scholar] [CrossRef]
- Bush, A.O.; Lafferty, K.D.; Lotz, J.M.; Shostak, A.W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 1997, 83, 575–583. [Google Scholar]
- Reiczigel, J.; Marozzi, M.; Fabian, I.; Rozsa, L. Biostatistics for parasitologists—A primer to Quantitative Parasitology. Trends Parasitol. 2019, 35, 277–281. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A. Paleontological Data Analysis, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2024; pp. 216–262. [Google Scholar]
- Martínez-Abraín, A.; Jiménez, J.; Jiménez, I.; Ferrer, X.; Llaneza, L.; Ferrer, M.; Palomero, G.; Ballesteros, F.; Galán, P.; Oro, D. Ecological consequences of human depopulation of rural areas on wildlife: A unifying perspective. Biol. Conserv. 2020, 252, 108860. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Balčiauskienė, L. Habitat and body condition of small mammals in a country at mid-latitude. Land 2024, 13, 1214. [Google Scholar] [CrossRef]
- Lanszki, Z.; Horváth, G.F.; Bende, Z.; Lanszki, J. Differences in the diet and trophic niche of three sympatric carnivores in a marshland. Mamm. Res. 2020, 65, 93–104. [Google Scholar] [CrossRef]
- Kemenszky, P.; Jánoska, F.; Nagy, G.; Csivincsik, Á. The golden jackal (Canis aureus) and the African swine fever pandemic: Its role is controversial but not negligible (a diet analysis study). Vet. Med. Sci. 2022, 8, 97–103. [Google Scholar] [CrossRef]
- Lesniak, I.; Heckmann, I.; Heitlinger, E.; Szentiks, C.A.; Nowak, C.; Harms, V.; Jarausch, A.; Reinhardt, I.; Kluth, G.; Hofer, H.; et al. Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population. Sci. Rep. 2017, 7, 41730. [Google Scholar] [CrossRef]
- Perrucci, S.; Maestrini, M.; Coppola, F.; Di Marco, M.; Rosso, A.D.; Pacini, M.I.; Zintu, P.; Felicioli, A. Gray wolf (Canis lupus italicus) and red fox (Vulpes vulpes) parasite survey in anthropized and natural areas of central Italy. Vet. Sci. 2023, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Miljević, M.; Lalošević, D.; Simin, V.; Blagojević, J.; Čabrilo, B.; Čabrilo, O.B. Intestinal helminth infections in the golden jackal (Canis aureus L.) from Vojvodina: Hotspot area of multilocular echinococcosis in Serbia. Acta Vet. Hung. 2021, 69, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Tsokana, C.N.; Sioutas, G.; Symeonidou, I.; Papadopoulos, E. Wildlife and parasitic infections: A One Health perspective in Greece. Curr. Res. Parasitol. Vector Borne Dis. 2024, 6, 100184. [Google Scholar] [CrossRef] [PubMed]
- Dalimi, A.; Sattari, A.; Motamedi, G.H. A study on intestinal helminthes of dogs, foxes and jackals in the western part of Iran. Vet. Parasitol. 2006, 142, 129–133. [Google Scholar] [CrossRef]
- Ferguson, A.A.; Inclan-Rico, J.M.; Lu, D.; Bobardt, S.D.; Hung, L.; Gouil, Q.; Baker, L.; Ritchie, M.E.; Jex, A.R.; Schwarz, E.M.; et al. Hookworms dynamically respond to loss of Type 2 immune pressure. PLoS Pathog. 2023, 19, e1011797. [Google Scholar] [CrossRef]
- Abou-El-Naga, I.F.; Mogahed, N.M. Potential roles of Toxocara canis larval excretory secretory molecules in immunomodulation and immune evasion. Acta Trop. 2023, 238, 106784. [Google Scholar] [CrossRef]
- Amor, D.A.L.M.; Santos, L.N.; Silva, E.S.; de Santana, M.B.R.; Belitardo, E.M.M.A.; Sena, F.A.; Pontes-de-Carvalho, L.; Figueiredo, C.A.; Alcântara-Neves, N.M. Toxocara canis extract fractions promote mainly the production of Th1 and regulatory cytokines by human leukocytes in vitro. Acta Trop. 2022, 234, 106579. [Google Scholar] [CrossRef]
- Wang, N.; Sieng, S.; Liang, T.; Xu, J.; Han, Q. Intestine proteomic and metabolomic alterations in dogs infected with Toxocara canis. Acta Trop. 2024, 252, 107140. [Google Scholar] [CrossRef]
- Cassar, M.; Dagenais, D. An overview of hookworm virulence mechanisms. Curr. Trop. Med. Rep. 2023, 10, 295–299. [Google Scholar] [CrossRef]
- Mukherjee, A.; Kumara, H.N.; Bhupathy, S. Golden jackal’s underground shelters: Natal site selection, seasonal burrowing activity and pup rearing by a cathemeral canid. Mamm. Res. 2018, 63, 325–339. [Google Scholar] [CrossRef]
- Reshamwala, H.S.; Mahar, N.; Dirzo, R.; Habib, B. Successful neighbour: Interactions of the generalist carnivore red fox with dogs, wolves and humans for continued survival in dynamic anthropogenic landscapes. Glob. Ecol. Conserv. 2021, 25, e01446. [Google Scholar] [CrossRef]
- Zaman, M.; Tolhurst, B.A.; Zhu, M.; Jiang, G. Den-site selection at multiple scales by the red fox (Vulpes vulpes subsp. montana) in a patchy human-dominated landscape. Glob. Ecol. Conserv. 2020, 23, e01136. [Google Scholar] [CrossRef]
- Grigione, M.M.; Burman, P.; Clavio, S.; Harper, S.J.; Manning, D.L.; Sarno, R.J. A comparative study between enteric parasites of coyotes in a protected and suburban habitat. Urban Ecosyst. 2014, 17, 1–10. [Google Scholar] [CrossRef]
- Smyth, J.D. Lysis of Echinococcus granulosus by surface-active agents in bile and the role of this phenomenon in determining host specificity in helminths. Proc. R. Soc. B 1962, 156, 553–572. [Google Scholar] [CrossRef]
- Conraths, F.J.; Probst, C.; Possenti, A.; Boufana, B.; Saulle, R.; La Torre, G.; Busani, L.; Casulli, A. Potential risk factors associated with human alveolar echinococcosis: Systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2017, 11, e0005801. [Google Scholar] [CrossRef]
- Casulli, A. Recognising the substantial burden of neglected pandemics cystic and alveolar echinococcosis. Lancet Glob. Health 2020, 8, e470–e471. [Google Scholar] [CrossRef]
Parasite Taxa | Host | Prevalence (%) (CI95%) * | Mean Abundance (CI95%) |
---|---|---|---|
Ancylostomatidae | fox | 61.3 (54.1–68.1) | 5.11 (3.92–6.99) ** |
jackal | 63.6 (55.6–70.9) | 10.7 (7.8–16.7) | |
Uncinaria stenocephala | fox | 57.7 (50.5–64.7) | 4.88 (3.63–6.78) |
jackal | 51.7 (43.7–59.6) | 8.64 (5.97–15.4) | |
Ancylostoma caninum | fox | 4.1 (1.9–7.9) | 0.23 (0.08–0.6) |
jackal | 15.9 (10.8–22.8) | 2.09 (1.15–3.89) | |
Toxocaridae | fox | 49 (42–56.2) ** | 4.53 (3.39–6.45) |
jackal | 28.5 (21.8–36.4) | 3.4 (1.97–6.18) | |
Toxocara canis | fox | 29.4 (23.2–36.3) | 2.81 (1.9–5.24) |
jackal | 21.9 (15.8–29.1) | 2.64 (1.51–5.05) | |
Toxascaris leonina | fox | 20.1 (14.9–26.5) | 1.72 (1.07–2.72) |
jackal | 6.6 (3.5–11.8) | 0.76 (0.14–3.07) | |
Alaria alata | fox | 22.3 (16.8–28.7) | 1.63 (1.04–2.74) |
jackal | 20.5 (14.7–27.8) | 2.31 (1.35–4.21) | |
Dipylidium caninum | fox | 5.7 (3–10) | 0.13 (0.06–0.27) |
jackal | 7.3 (3.8–12.5) | 0.37 (0.17–0.76) | |
Mesocestoides spp. | fox | 29.9 (23.7–36.8) | 2.06 (1.2–3.77) |
jackal | 29.8 (22.8–37.7) | 1.38 (0.84–3.07) | |
Echinococcus multilocularis | fox | 5.7 (3–10) | 0.68 (0.31–1.47) |
jackal | 9.9 (5.8–15.8) | 4.44 (1.62–12.9) | |
Taenia spp. | fox | 26.3 (20.5–33) | 2.42 (1.27–5.17) |
jackal | 33.1 (25.8–41) | 1.07 (0.74–1.96) |
Red Fox | ||
---|---|---|
non-infected (N = 166) | 17 parasite/parasite (SD = 23.41) | p = 0.02 |
infected (N = 11) | 35.27 parasite/parasite (SD = 24.41) | |
golden jackal | ||
non-infected (N = 119) | 21.39 parasite/parasite (SD = 33.23) | p = 0.001 |
infected (N = 15) | 68.93 parasite/parasite (SD = 90.66) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moloi, S.; Csivincsik, Á.; Nagy, E.; Tari, T.; Halász, T.; Polgár, K.; Nagy, G. Human Impact on the Composition of Small-Intestine Helminth Infracommunities in Canine Mesocarnivores, with a Special Focus on Echinococcus multilocularis. Parasitologia 2025, 5, 30. https://doi.org/10.3390/parasitologia5030030
Moloi S, Csivincsik Á, Nagy E, Tari T, Halász T, Polgár K, Nagy G. Human Impact on the Composition of Small-Intestine Helminth Infracommunities in Canine Mesocarnivores, with a Special Focus on Echinococcus multilocularis. Parasitologia. 2025; 5(3):30. https://doi.org/10.3390/parasitologia5030030
Chicago/Turabian StyleMoloi, Sibusiso, Ágnes Csivincsik, Eszter Nagy, Tamás Tari, Tibor Halász, Klaudia Polgár, and Gábor Nagy. 2025. "Human Impact on the Composition of Small-Intestine Helminth Infracommunities in Canine Mesocarnivores, with a Special Focus on Echinococcus multilocularis" Parasitologia 5, no. 3: 30. https://doi.org/10.3390/parasitologia5030030
APA StyleMoloi, S., Csivincsik, Á., Nagy, E., Tari, T., Halász, T., Polgár, K., & Nagy, G. (2025). Human Impact on the Composition of Small-Intestine Helminth Infracommunities in Canine Mesocarnivores, with a Special Focus on Echinococcus multilocularis. Parasitologia, 5(3), 30. https://doi.org/10.3390/parasitologia5030030