Knowledge and Awareness of Bovine Fasciolosis Among Dairy Farm Personnel in the Eastern Cape Province, South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Consideration
2.2. Study Area
2.3. Participant Selection
2.4. Data Collection
2.5. Statistical Analyses
3. Results
3.1. Socio-Demographic Characteristics and Knowledge of Fasciolosis
3.2. Factors Influencing Knowledge of Fasciolosis and Its Zoonotic Importance
3.3. Farm Management Practices and the Association with Fasciolosis Risk Knowledge
3.4. Knowledge of Clinical Signs of Bovine Fasciolosis
3.5. Knowledge of Risk Factors Associated with Fasciolosis
3.6. Knowledge on Treatment, Control, and Prevention of Fasciolosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castro-Hermida, J.A.; González-Warleta, M.; Martínez-Sernández, V.; Ubeira, F.M.; Mezo, M. Current Challenges for Fasciolicide Treatment in Ruminant Livestock. Trends Parasitol. 2021, 37, 430–444. [Google Scholar] [CrossRef]
- Howell, A.; Baylis, M.; Smith, R.; Pinchbeck, G.; Williams, D. Epidemiology and impact of Fasciola hepatica exposure in high-yielding dairy herds. Prev. Vet. Med. 2015, 121, 41–48. [Google Scholar] [CrossRef]
- Utrera-Quintana, F.; Covarrubias-Balderas, A.; Olmedo-Juárez, A.; Cruz-Aviña, J.; Córdova-Izquierdo, A.; Pérez-Mendoza, N.; Villa-Mancera, A. Fasciolosis prevalence, risk factors and economic losses due to bovine liver condemnation in abattoirs in Mexico. Microb. Pathog. 2022, 173, 105851. [Google Scholar] [CrossRef]
- Villa-Mancera, A.; Reynoso-Palomar, A. High prevalence, potential economic impact, and risk factors of Fasciola hepatica in dairy herds in tropical, dry and temperate climate regions in Mexico. Acta Trop. 2019, 193, 169–175. [Google Scholar] [CrossRef]
- Alba, A.; Vazquez, A.A.; Hurtrez-Bousses, S. Towards the comprehension of fasciolosis (re-)emergence: An integrative overview. Parasitology 2021, 148, 385–407. [Google Scholar] [CrossRef]
- Byrne, A.W.; Graham, J.; McConville, J.; Milne, G.; McDowell, S.; Hanna, R.E.B.; Guelbenzu-Gonzalo, M. Seasonal variation of Fasciola hepatica antibodies in dairy herds in Northern Ireland measured by bulk tank milk ELISA. Parasitol. Res. 2018, 117, 2725–2733. [Google Scholar] [CrossRef]
- da Costa, R.A.; Corbellini, L.G.; Castro-Janer, E.; Riet-Correa, F. Evaluation of losses in carcasses of cattle naturally infected with Fasciola hepatica: Effects on weight by age range and on carcass quality parameters. Int. J. Parasitol. 2019, 49, 867–872. [Google Scholar] [CrossRef]
- Forstmaier, T.; Knubben-Schweizer, G.; Strube, C.; Zablotski, Y.; Wenzel, C. Rumen (Calicophoron/Paramphistomum spp.) and Liver Flukes (Fasciola hepatica) in Cattle-Prevalence, Distribution, and Impact of Management Factors in Germany. Animals 2021, 11, 2727. [Google Scholar] [CrossRef]
- Cwiklinski, K.; O’Neill, S.M.; Donnelly, S.; Dalton, J.P. A prospective view of animal and human Fasciolosis. Parasite Immunol. 2016, 38, 558–568. [Google Scholar] [CrossRef]
- Fitzpatrick, J.L. Global food security: The impact of veterinary parasites and parasitologists. Vet. Parasitol. 2013, 195, 233–248. [Google Scholar] [CrossRef]
- Jaja, I.F.; Mushonga, B.; Green, E.; Muchenje, V. Financial loss estimation of bovine fasciolosis in slaughtered cattle in South Africa. Parasite Epidemiol. Control 2017, 2, 27–34. [Google Scholar] [CrossRef]
- Kelley, J.M.; Rathinasamy, V.; Elliott, T.P.; Rawlin, G.; Beddoe, T.; Stevenson, M.A.; Spithill, T.W. Determination of the prevalence and intensity of Fasciola hepatica infection in dairy cattle from six irrigation regions of Victoria, South-eastern Australia, further identifying significant triclabendazole resistance on three properties. Vet. Parasitol. 2020, 277, 109019. [Google Scholar] [CrossRef]
- Mehmood, K.; Zhang, H.; Sabir, A.J.; Abbas, R.Z.; Ijaz, M.; Durrani, A.Z.; Saleem, M.H.; Ur Rehman, M.; Iqbal, M.K.; Wang, Y.; et al. A review on epidemiology, global prevalence and economical losses of fasciolosis in ruminants. Microb. Pathog. 2017, 109, 253–262. [Google Scholar] [CrossRef]
- Regasa, A.; Seboka, M. Review on Fasciolosis, its Effect on Meat Quality/Hazards and Economical Importances. Entomol. Ornithol. Herpetol. Curr. Res. 2021, 10, 245. [Google Scholar]
- Bennema, S.C.; Ducheyne, E.; Vercruysse, J.; Claerebout, E.; Hendrickx, G.; Charlier, J. Relative importance of management, meteorological and environmental factors in the spatial distribution of Fasciola hepatica in dairy cattle in a temperate climate zone. Int. J. Parasitol. 2011, 41, 225–233. [Google Scholar] [CrossRef]
- Charlier, J.; Hostens, M.; Jacobs, J.; Van Ranst, B.; Duchateau, L.; Vercruysse, J. Integrating fasciolosis control in the dry cow management: The effect of closantel treatment on milk production. PLoS ONE 2012, 7, e43216. [Google Scholar] [CrossRef]
- Kelley, J.M.; Rawlin, G.; Beddoe, T.; Stevenson, M.; Spithill, T.W. Fasciola hepatica Control Practices on a Sample of Dairy Farms in Victoria, Australia. Front. Vet. Sci. 2021, 8, 669117. [Google Scholar] [CrossRef]
- May, K.; Raue, K.; Blazejak, K.; Jordan, D.; Strube, C. Pasture rewetting in the context of nature conservation shows no long-term impact on endoparasite infections in sheep and cattle. Parasit. Vectors 2022, 15, 33. [Google Scholar] [CrossRef]
- Munita, M.P.; Rea, R.; Martinez-Ibeas, A.M.; Byrne, N.; McGrath, G.; Munita-Corbalan, L.E.; Sekiya, M.; Mulcahy, G.; Sayers, R.G. Liver fluke in Irish sheep: Prevalence and associations with management practices and co-infection with rumen fluke. Parasit. Vectors 2019, 12, 525. [Google Scholar] [CrossRef]
- Ojeda-Robertos, N.F.; Peralta-Torres, J.A.; Parra-Bracamonte, G.M.; Cruz-Gonzalez, A.R.; Luna-Palomera, C.; Ulin-Yzquierdo, C.; Pires, L.A.; Molento, M.B. First report and risk of infection of Fasciola hepatica (Linnaeus, 1761) in water buffaloes (Bubalus bubalis—Linnaeus, 1758) in Mexico. Vet. Parasitol. Reg. Stud. Reports 2022, 28, 100682. [Google Scholar] [CrossRef]
- Ploeger, H.W.; Ankum, L.; Moll, L.; van Doorn, D.C.K.; Mitchell, G.; Skuce, P.J.; Zadoks, R.N.; Holzhauer, M. Presence and species identity of rumen flukes in cattle and sheep in the Netherlands. Vet. Parasitol. 2017, 243, 42–46. [Google Scholar] [CrossRef]
- Mucheka, V.T.; Lamb, J.M.; Pfukenyi, D.M.; Mukaratirwa, S. DNA sequence analyses reveal co-occurrence of novel haplotypes of Fasciola gigantica with F. hepatica in South Africa and Zimbabwe. Vet. Parasitol. 2015, 214, 144–151. [Google Scholar] [CrossRef]
- Nyagura, I.; Malatji, M.P.; Mukaratirwa, S. Occurrence of (Digenea: Fasciolidae) Species in Livestock, Wildlife and Humans, and the Geographical Distribution of Their Intermediate Hosts in South Africa-A Scoping Review. Front. Vet. Sci. 2022, 9, 935428. [Google Scholar] [CrossRef]
- Dermauw, V.; Muchai, J.; Al Kappany, Y.; Castaneda, A.L.F.; Dorny, P. Human fascioliasis in Africa: A systematic review. PLoS ONE 2021, 16, e0261166. [Google Scholar] [CrossRef]
- Jaja, I.F.; Mushonga, B.; Green, E.; Muchenje, V. Seasonal prevalence, body condition score and risk factors of bovine fasciolosis in South Africa. Vet. Anim. Sci. 2017, 4, 1–7, Erratum in Vet. Anim. Sci. 2020, 9, 100104. . [Google Scholar] [CrossRef]
- Ndlovu, T.; Chimonyo, M.; Muchenje, V. Monthly changes in body condition scores and internal parasite prevalence in Nguni, Bonsmara and Angus steers raised on sweetveld. Trop. Anim. Health Prod. 2009, 41, 1169–1177. [Google Scholar] [CrossRef]
- Rast, L.; Nampanya, S.; Toribio, J.A.L.M.L.; Khounsy, S.; Windsor, P.A. Fasciola gigantica infection in large ruminants in northern Laos: Smallholder knowledge and practices. Anim. Prod. Sci. 2015, 57, 141–146. [Google Scholar] [CrossRef]
- Schweizer, G.; Braun, U.; Deplazes, P.; Torgerson, P.R. Estimating the financial losses due to bovine fasciolosis in Switzerland. Vet. Rec. 2005, 157, 188–193. [Google Scholar] [CrossRef]
- Kelley, J.M.; Stevenson, M.A.; Rathinasamy, V.; Rawlin, G.; Beddoe, T.; Spithill, T.W. Analysis of daily variation in the release of faecal eggs and coproantigen of Fasciola hepatica in naturally infected dairy cattle and the impact on diagnostic test sensitivity. Vet. Parasitol. 2021, 298, 109504. [Google Scholar] [CrossRef]
- Olaogun, S.C.; Fosgate, G.T.; Byaruhanga, C.; Marufu, M.C. The knowledge, attitudes, and practices of smallholder cattle farmers concerning the epidemiology of bovine fasciolosis in the North West Province, South Africa. Trop. Anim. Health Prod. 2023, 55, 97. [Google Scholar] [CrossRef]
- Maleke, M.S.; Adebo, O.A. Nutritional composition and health-promoting properties of amasi: A South African fermented milk product. Fermentation 2022, 8, 493. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.1.2; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Diniso, Y.S.; Jaja, I.F. Dairy farm-workers’ knowledge of factors responsible for culling and mortality in the Eastern Cape Province, South Africa. Trop. Anim. Heal. Prod. 2021, 53, 398. [Google Scholar] [CrossRef]
- Riaz, M.; Yousaf, F.; Akram, M.; Ullah, M.I.; Rasool, G.; Egbuna, C.; Patrick-Iwuanyanwu, K.C.; Uche, C.Z.; Ifemeje, J.C. Immunology and immunochemistry. In Analytical Techniques in Biosciences; Academic Press: Cambridge, MA, USA, 2022; pp. 251–268. [Google Scholar] [CrossRef]
- Zewde, A.; Bayu, Y.; Wondimu, A. Prevalence of Bovine Fasciolosis and Its Economic Loss due to Liver Condemnation at Wolaita Sodo Municipal Abattair, Ethiopia. Vet. Med. Int. 2019, 2019, 9572373. [Google Scholar] [CrossRef]
- Opio, L.G.; Abdelfattah, E.M.; Terry, J.; Odongo, S.; Okello, E. Prevalence of Fascioliasis and Associated Economic Losses in Cattle Slaughtered at Lira Municipality Abattoir in Northern Uganda. Animals 2021, 11, 681. [Google Scholar] [CrossRef]
- Nyirenda, S.S.; Sakala, M.; Moonde, L.; Kayesa, E.; Fandamu, P.; Banda, F.; Sinkala, Y. Prevalence of bovine fascioliasis and economic impact associated with liver condemnation in abattoirs in Mongu district of Zambia. BMC Vet. Res. 2019, 15, 33. [Google Scholar] [CrossRef]
- Mochankana, M.E.; Robertson, I.D. Cross-sectional prevalence of Fasciola gigantica infections in beef cattle in Botswana. Trop. Anim. Health Prod. 2018, 50, 1355–1363. [Google Scholar] [CrossRef]
- Thi, P.; Nguyen, X.; Hoang, H.V.; Thi, H.; Dinh, K.; Dorny, P.; Losson, B.; Bui, D.T.; Lempereur, L. Insights on foodborne zoonotic trematodes in freshwater snails in North and Central Vietnam. Parasitol. Res. 2021, 120, 949–962. [Google Scholar] [CrossRef]
- Nath, T.C.; Eom, K.S.; Choe, S.; Islam, S.; Sabuj, S.S.; Saha, E.; Tuhin, R.H.; Ndosi, B.A.; Kang, Y.; Kim, S.; et al. Insights to helminth infections in food and companion animals in Bangladesh: Occurrence and risk profiling. Parasite Epidemiol. Control 2022, 17, e00245. [Google Scholar] [CrossRef]
- Fairweather, I.; Brennan, G.P.; Hanna, R.E.B.; Robinson, M.W.; Skuce, P.J. Drug resistance in liver flukes. Int. J. Parasitol. Drugs Drug Resist. 2020, 12, 39–59. [Google Scholar] [CrossRef]
- Kipyegen, C.K.; Muleke, C.I.; Otachi, E.O. Human and animal fasciolosis: Coprological survey in Narok, Baringo and Kisumu counties, Kenya. Onderstepoort J. Vet. Res. 2022, 89, 1954. [Google Scholar] [CrossRef]
- Bargues, M.D.; Artigas, P.; Varghese, G.M.; John, T.J.; Ajjampur, S.S.R.; Ahasan, S.A.; Chowdhury, E.H.; Gabrielli, A.F.; Mas-Coma, S. Human fascioliasis emergence in southern Asia: Complete nuclear rDNA spacer and mtDNA gene sequences prove Indian patient infection related to fluke hybridization in northeastern India and Bangladesh. One Health 2024, 18, 100675. [Google Scholar] [CrossRef]
- Malatji, M.P.; Mukaratirwa, S. Molecular detection of natural infection of Lymnaea (Pseudosuccinea) columella (Gastropoda: Lymnaeidae) with Fasciola gigantica (Digenea: Fasciolidae) from two provinces of South Africa. J. Helminthol. 2019, 94, e38. [Google Scholar] [CrossRef]
- de Kock, K.N.; Wolmarans, C.T.; Bornman, M. Distribution and habitats of the snail Lymnaea truncatula, intermediate host of the liver fluke Fasciola hepatica, in South Africa. J. S. Afr. Veter. Assoc. 2003, 74, 117–122. [Google Scholar] [CrossRef]
- Nyokabi, S.; Luning, P.A.; Boer, I.J.M.D.; Korir, L.; Muunda, E.; Bebe, B.O.; Lindahl, J.; Bett, B.; Oosting, S.J. Milk quality and hygiene: Knowledge, attitudes and practices of smallholder dairy farmers in central Kenya. Food Control. 2021, 130, 108303. [Google Scholar] [CrossRef]
- Lindahl, J.F.; Deka, R.P.; Asse, R.; Lapar, L.; Grace, D. Hygiene knowledge, attitudes and practices among dairy value chain actors in Assam, north-east India and the impact of a training intervention. Infect. Ecol. Epidemiol. 2019, 8, 1555444. [Google Scholar] [CrossRef]
- Hammami, I.; Amdouni, Y.; Romdhane, R.; Sassi, L.; Farhat, N.; Rekik, M.; Gharbi, M. Prevalence of Fasciola hepatica infection in slaughtered sheep from Northwest Tunisia and its risk factors: Association with gastrointestinal helminths infection and anaemia. Vet. Med. Sci. 2024, 10, e1575. [Google Scholar] [CrossRef]
- Phalee, A.; Wongsawad, C.; Rojanapaibul, A.; Chai, J.Y. Experimental life history and biological characteristics of Fasciola gigantica (Digenea: Fasciolidae). Korean J. Parasitol. 2015, 53, 59–64. [Google Scholar] [CrossRef]
- Opsal, T.; Toftaker, I.; Nodtvedt, A.; Robertson, L.J.; Tysnes, K.R.; Woolsey, I.; Hektoen, L. Gastrointestinal nematodes and Fasciola hepatica in Norwegian cattle herds: A questionnaire to investigate farmers’ perceptions and control strategies. Acta Vet. Scand. 2021, 63, 52. [Google Scholar] [CrossRef]
- Isah, U.M. Studies on the prevalence of fascioliasis among ruminant animals in northern Bauchi state, north-eastern Nigeria. Parasite Epidemiol. Control 2019, 5, e00090. [Google Scholar] [CrossRef]
- Villa-Mancera, A.; Reynoso-Palomar, A. The prevalence and risk factors of liver fluke infection in Mexican horses, donkeys and mules in tropical and temperate regions. Parasitol. Res. 2020, 119, 3699–3703. [Google Scholar] [CrossRef]
- Dominguez, M.F.; Gonzalez-Miguel, J.; Carmona, C.; Dalton, J.P.; Cwiklinski, K.; Tort, J.; Siles-Lucas, M. Low allelic diversity in vaccine candidates genes from different locations sustain hope for Fasciola hepatica immunization. Vet. Parasitol. 2018, 258, 46–52. [Google Scholar] [CrossRef]
- Diaz-Quevedo, C.; Frias, H.; Cahuana, G.M.; Tapia-Limonchi, R.; Chenet, S.M.; Tejedo, J.R. High prevalence and risk factors of fascioliasis in cattle in Amazonas, Peru. Parasitol. Int. 2021, 85, 102428. [Google Scholar] [CrossRef]
- Chaouadi, M.; Harhoura, K.; Aissi, M.; Zait, H.; Zenia, S.; Tazerouti, F. A post-mortem study of bovine fasciolosis in the Mitidja (north center of Algeria): Prevalence, risk factors, and comparison of diagnostic methods. Trop. Anim. Health Prod. 2019, 51, 2315–2321. [Google Scholar] [CrossRef]
- Mpisana, Z.; Jaja, I.F.; Byaruhanga, C.; Marufu, M.C. Body condition scores, fluke intensity, liver pathology, and carcass quality of different dairy cattle genotypes infected with Fasciola species at high throughput abattoirs in South Africa. Parasitol. Res. 2022, 121, 1671–1682. [Google Scholar] [CrossRef]
- Hayes, C.J.; O’Brien, P.J.; Wolfe, A.; Hoey, S.; Chandler, C.; Rhodes, V.; Carty, C.I.; Piras, I.M.; Ryan, E.G. Acute fasciolosis in an alpaca: A case report. BMC Vet. Res. 2021, 17, 215. [Google Scholar] [CrossRef]
- Hayward, A.D.; Skuce, P.J.; McNeilly, T.N. Tolerance of liver fluke infection varies between breeds and producers in Scottish beef cattle. Front. Genet. 2020, 3, 100126. [Google Scholar] [CrossRef]
- Charlier, J.; Rinaldi, L.; Musella, V.; Ploeger, H.W.; Chartier, C.; Vineer, H.R.; Hinney, B.; von Samson-Himmelstjerna, G.; Bacescu, B.; Mickiewicz, M.; et al. Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Prev. Vet. Med. 2020, 182, 105103. [Google Scholar] [CrossRef]
- Gauly, M.; Ammer, S. Review: Challenges for dairy cow production systems arising from climate changes. Animal 2020, 14, s196–s203. [Google Scholar] [CrossRef]
- Rose Vineer, H.; Morgan, E.R.; Hertzberg, H.; Bartley, D.J.; Bosco, A.; Charlier, J.; Chartier, C.; Claerebout, E.; de Waal, T.; Hendrickx, G.; et al. Increasing importance of anthelmintic resistance in European livestock: Creation and meta-analysis of an open database. Parasite 2020, 27, 69. [Google Scholar] [CrossRef]
- Quigley, A.; Sekiya, M.; Garcia-Campos, A.; Paz-Silva, A.; Howell, A.; Williams, D.J.L.; Mulcahy, G. Horses are susceptible to natural, but resistant to experimental, infection with the liver fluke, Fasciola hepatica. Vet. Parasitol. 2020, 281, 109094. [Google Scholar] [CrossRef]
- Lamb, J.; Doyle, E.; Barwick, J.; Chambers, M.; Kahn, L. Prevalence and pathology of liver fluke (Fasciola hepatica) in fallow deer (Dama dama). Vet. Parasitol. 2021, 293, 109427. [Google Scholar] [CrossRef]
- Brockwell, Y.M.; Elliott, T.P.; Anderson, G.R.; Stanton, R.; Spithill, T.W.; Sangster, N.C. Confirmation of Fasciola hepatica resistant to triclabendazole in naturally infected Australian beef and dairy cattle. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 48–54. [Google Scholar] [CrossRef]
- Kouadio, J.N.; Giovanoli Evack, J.; Achi, L.Y.; Balmer, O.; Utzinger, J.; N’Goran, E.K.; Bonfoh, B.; Hattendorf, J.; Zinsstag, J. Efficacy of triclabendazole and albendazole against Fasciola spp. infection in cattle in Cote d’Ivoire: A randomised blinded trial. Acta Trop. 2021, 222, 106039. [Google Scholar] [CrossRef]
- Castro-Arnaez, I.C.; Montenegro, V.M.; Vargas-Leiton, B.; Alvarez-Calderon, V.; Soto-Barrientos, N. Anthelmintic resistance in commercial sheep farms in Costa Rica. Vet. Parasitol. Reg. Stud. Rep. 2021, 23, 100506. [Google Scholar] [CrossRef]
- Rapiya, M.; Hawkins, H.J.; Muchenje, V.; Mupangwa, J.F.; Marufu, M.C.; Dzama, K.; Mapiye, C. Rotational grazing approaches reduces external and internal parasite loads in cattle. Afr. J. Range Forage Sci. 2019, 36, 151–159. [Google Scholar] [CrossRef]
- Claerebout, E.; De Wilde, N.; Van Mael, E.; Casaert, S.; Velde, F.V.; Roeber, F.; Veloz, P.V.; Levecke, B.; Geldhof, P. Anthelmintic resistance and common worm control practices in sheep farms in Flanders, Belgium. Vet. Parasitol. Reg. Stud. Rep. 2020, 20, 100393. [Google Scholar] [CrossRef]
- Bloemhoff, Y.; Danaher, M.; Andrew, F.; Morgan, E.; Mulcahy, G.; Power, C.; Sayers, R. Parasite control practices on pasture-based dairy farms in the Republic of Ireland. Vet. Parasitol. 2014, 204, 352–363. [Google Scholar] [CrossRef]
- Thomas, S.; Abraham, A.; Rodriguez-Mallon, A.; Unajak, S.; Bannantine, J.P. Challenges in Veterinary Vaccine Development. Methods Mol. Biol. 2022, 2411, 3–34. [Google Scholar] [CrossRef]
- Sunita, K.; Mas-Coma, S.; Bargues, M.D.; Sadaf; Khan, M.A.; Habib, M.; Mustafa, S.; Husain, S.A. Buffalo Infection by Fasciola gigantica Transmitted by Radix acuminata in Uttar Pradesh, India: A Molecular Tool to Improve Snail Vector Epidemiology Assessments and Control Surveillance. Acta Parasitol. 2021, 66, 1396–1405. [Google Scholar] [CrossRef]
- Reigate, C.; Williams, H.W.; Denwood, M.J.; Morphew, R.M.; Thomas, E.R.; Brophy, P.M. Evaluation of two Fasciola hepatica faecal egg counting protocols in sheep and cattle. Vet. Parasitol. 2021, 294, 109435. [Google Scholar] [CrossRef]
- Lopez Corrales, J.; Cwiklinski, K.; De Marco Verissimo, C.; Dorey, A.; Lalor, R.; Jewhurst, H.; McEvoy, A.; Diskin, M.; Duffy, C.; Cosby, S.L.; et al. Diagnosis of sheep fasciolosis caused by Fasciola hepatica using cathepsin L enzyme-linked immunosorbent assays (ELISA). Vet. Parasitol. 2021, 298, 109517. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Wang, M.; Brostaux, Y.; Yin, C.; Dogot, T. Identifying key pathways in manure and sewage management of dairy farming based on a quantitative typology: A case study in China. Sci. Total Environ. 2021, 760, 143326. [Google Scholar] [CrossRef]
- Vidal, A.; Lurette, A.; Nozières-Petit, M.O.; Vall, É.; Moulin, C.H. The emergence of agroecological practices on agropastoral dairy farms in the face of changing demand from dairies. Biotechnol. Agron. Soc. Environ. 2020, 24, 163–183. [Google Scholar] [CrossRef]
- Takeuchi-Storm, N.; Denwood, M.; Hansen, T.V.A.; Halasa, T.; Rattenborg, E.; Boes, J.; Enemark, H.L.; Thamsborg, S.M. Farm-level risk factors for Fasciola hepatica infection in Danish dairy cattle as evaluated by two diagnostic methods. Parasit. Vectors 2017, 10, 555. [Google Scholar] [CrossRef]
- Knubben-Schweizer, G.; Ruegg, S.; Torgerson, P.R.; Rapsch, C.; Grimm, F.; Hassig, M.; Deplazes, P.; Braun, U. Control of bovine fasciolosis in dairy cattle in Switzerland with emphasis on pasture management. Vet. J. 2010, 186, 188–191. [Google Scholar] [CrossRef]
Variable | Category | Freq. | Percentage (%) | Knowledge of F. hepatica | X2 | p Value | Knowledge of F. gigantica | X2 | p Value | Knowledge of the Water Snail | X2 | p Value | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yes | No | Yes | No | Yes | No | ||||||||||
Farm size | large | 20 | 11.8 | 9 | 11 | 6 | 14 | 12 | 8 | ||||||
Medium | 108 | 71.1 | 39 | 69 | 15 | 93 | 42 | 66 | |||||||
Small | 24 | 17.1 | 8 | 16 | 153.5 | 0.0002 | 0 | 24 | 157.2 | 0.002 | 11 | 13 | 156.9 | 0.03 | |
Region | Coastal | 53 | 34.6 | 25 | 28 | 34 | 56 | ||||||||
Inland | 99 | 65.4 | 33 | 66 | 154.0 | 0.001 | 155.9 | 0.05 | 25 | 75 | 145.9 | 0.000 | |||
Gender | Female | 52 | 34.2 | 8 | 42 | 0 | 50 | 50 | 50 | ||||||
Male | 100 | 65.8 | 48 | 52 | 166.8 | 0.001 | 19 | 81 | 157.6 | 0.000 | 15 | 35 | 157.5 | 0.000 | |
Age | <21 | 3 | 1 | 0 | 3 | 0 | 3 | 0 | 3 | ||||||
21–30 | 49 | 32.2 | 16 | 33 | 5 | 44 | 20 | 29 | |||||||
31–40 | 69 | 45.4 | 26 | 43 | 10 | 59 | 29 | 40 | |||||||
>40 | 31 | 20.4 | 13 | 18 | 154.5 | 0.002 | 4 | 29 | 152.5 | 0.000 | 16 | 15 | 157.5 | 0.000 | |
Educational status | Primary | 4 | 3.3 | 1 | 4 | 0 | 4 | 1 | 3 | ||||||
Secondary | 50 | 32.2 | 8 | 42 | 3 | 47 | 19 | 41 | |||||||
Tertiary | 98 | 64.5 | 47 | 51 | 166.2 | 0.001 | 16 | 82 | 155.6 | 0.005 | 45 | 53 | 152.8 | 0.001 | |
Studied Agriculture | Yes | 75 | 49.4 | 14 | 61 | 7 | 68 | 31 | 44 | ||||||
No | 77 | 50.6 | 43 | 30 | 174.6 | 0.000 | 12 | 63 | 153.5 | 0.001 | 34 | 41 | 152.2 | 0.001 | |
Occupation | Manager | 73 | 48 | 37 | 36 | 18 | 55 | 39 | 34 | ||||||
Supervisor | 5 | 3.3 | 5 | 0 | 0 | 5 | 2 | 3 | |||||||
AHT | 7 | 4.6 | 4 | 1 | 1 | 4 | 1 | 4 | |||||||
GW | 67 | 44.1 | 10 | 57 | 184.7 | 0.000 | 0 | 67 | 172.7 | 0.000 | 23 | 33 | 158.5 | 0.001 | |
Experience | <2 years | 8 | 6.6 | 4 | 4 | 0 | 8 | 4 | 4 | ||||||
2 years | 16 | 10.5 | 0 | 16 | 0 | 16 | 0 | 16 | |||||||
2–4 years | 13 | 13 | 10 | 3 | 3 | 10 | 7 | 6 | |||||||
5–6 years | 15 | 9.9 | 8 | 7 | 0 | 15 | 3 | 13 | |||||||
>6 years | 100 | 64.5 | 36 | 64 | 160.2 | 0.001 | 18 | 82 | 160.2 | 0.000 | 15 | 47 | 171.6 | 0.002 |
Variable | Category | Frequency | Knowledge of Fasciolosis | X2 | Sig. | Zoonotic Potential of the Disease | X2 | Sig. | ||
---|---|---|---|---|---|---|---|---|---|---|
Yes | No | Yes | No | |||||||
Gender | Female | 52 | 19 | 33 | 12 | 40 | ||||
Male | 100 | 38 | 62 | 21.017 | 0.000 | 45 | 55 | 19.613 | 0.001 | |
<21 years | 3 | - | 3 | - | 3 | |||||
Age | 21–30 years | 49 | 20 | 29 | 9 | 40 | ||||
31–40 years | 69 | 29 | 40 | 40 | 29 | |||||
>40 years | 31 | 15 | 16 | 19.076 | 0.001 | 11 | 20 | 21.325 | 0.000 | |
Primary | 4 | - | 4 | 1 | 3 | |||||
Educational status | Secondary | 50 | 15 | 35 | 7 | 43 | ||||
Tertiary | 98 | 35 | 63 | 21.354 | 0.000 | 38 | 60 | 20.516 | 0.001 | |
Yes | 75 | 40 | 35 | 25 | 50 | |||||
Studied agriculture | No | 77 | 22 | 55 | 20.535 | 0.000 | 24 | 53 | 23.519 | 0.000 |
Manager | 73 | 19 | 54 | 23 | 50 | |||||
Occupation | Supervisor | 5 | 1 | 4 | 3 | 4 | ||||
AHT | 7 | 2 | 5 | 6 | 1 | |||||
General worker | 67 | 25 | 42 | 23.089 | 0.0001 | 27 | 40 | 21.049 | 0.000 | |
Experience | <2 years | 8 | 2 | 6 | 1 | 7 | ||||
2 years | 16 | 5 | 11 | 6 | 10 | |||||
2–4 years | 13 | 5 | 8 | 3 | 10 | |||||
5–6 years | 15 | 6 | 9 | 5 | 11 | |||||
>6 years | 100 | 30 | 70 | 25.425 | 0.0001 | 40 | 60 | 24.154 | 0.0001 |
Variables | Category/Response | Frequency | Percentage | Swampy Areas | Presence of Snails | ||
---|---|---|---|---|---|---|---|
X2 | p-Value | X2 | p-Value | ||||
Mixed farming | Yes | 21 | 13.8 | ||||
No | 131 | 86.2 | 21.776 | 0.000 | 29.616 | 0.000 | |
Feeding system | Pasture-based | 147 | 96.7 | ||||
TMR | 5 | 3.3 | 23.386 | 0.0001 | 22.314 | 0.002 | |
Enough fodder | Yes | 114 | 75 | ||||
No | 38 | 25 | 21.882 | 0.0001 | 23.286 | 0.002 | |
Wetting of pastures | Yes | 138 | 90.8 | ||||
No | 14 | 9.2 | 21.882 | 0.0001 | 22.772 | 0.000 | |
Drying of pastures | Yes | 106 | 69.8 | ||||
No | 46 | 30.2 | 27.684 | 0.000 | 34.526 | 0.000 | |
Rotation of animals | Yes | 144 | 94.7 | ||||
No | 8 | 5.3 | 24.319 | 0.0001 | 24.314 | 0.0000 | |
Grazing period | <1 day | 79 | 52.2 | ||||
1 day | 70 | 46.1 | |||||
>1 day | 3 | 1.7 | 21.979 | 0.000 | 36.510 | 0.002 | |
Resting period | 9–21 days | 28 | 18.8 | ||||
21–33 days | 78 | 51.3 | |||||
33 days and above | 44 | 29.9 | 29.920 | 0.0001 | 31.194 | 0.000 |
Variables | Frequency | Coastal | Inland | X2 | p-Value | ||
---|---|---|---|---|---|---|---|
Respondents | Respondents | ||||||
Yes | No | Yes | No | ||||
Anemia | 152 | 31 | 22 | 51 | 48 | 19.254 | 0.001 |
Weight loss and loss of appetite | 152 | 33 | 20 | 60 | 39 | 18.486 | 0.001 |
Coughing | 152 | 13 | 40 | 51 | 48 | 30.949 | 0.000 |
Milk reduction | 152 | 30 | 23 | 52 | 47 | 21.837.5 | 0.000 |
Diarrhea | 152 | 25 | 28 | 61 | 38 | 23.470 | 0.001 |
Bottle jaw | 152 | 28 | 25 | 36 | 63 | 26.007 | 0.000 |
Nausea | 152 | 15 | 38 | 36 | 63 | 22.030 | 0.000 |
Variables n | Coastal | Inland | X2 | Significance | |||
---|---|---|---|---|---|---|---|
Respondents | Respondents | ||||||
Yes | No | Yes | No | ||||
1 | Swampy areas 152 | 31 | 22 | 44 | 55 | 24.913 | 0.001 |
2 | Dams 152 | 20 | 33 | 52 | 47 | 23.352 | 0.000 |
3 | Snail population 152 | 27 | 26 | 48 | 51 | 21.564 | 0.000 |
4 | Grazing near the river 152 | 32 | 21 | 54 | 45 | 22.228 | 0.000 |
5 | Overflowing 152 | 31 | 21 | 55 | 43 | 16.443 | 0.002 |
6 | Climate change 152 | 31 | 22 | 51 | 46 | 22.018 | 0.000 |
7 | Use of molluscicide 152 | 32 | 21 | 51 | 48 | 22.023 | 0.000 |
Variable | Category | Percentage (%) | Coastal | Inland | X2 | p-Value |
---|---|---|---|---|---|---|
Season | spring | 27.6 | 24 | 18 | ||
summer | 63.2 | 38 | 58 | |||
autumn | 4.6 | 3 | 4 | |||
winter | 4.6 | 4 | 3 | 22.212 | 0.000 |
Variable | Category | Coastal | Inland | X2 | p-Value |
---|---|---|---|---|---|
Age | >3 years | 39 | 62 | ||
3 years | 11 | 18 | |||
<3 years | 3 | 19 | 26.724 | 0.0001 | |
BCS | Fair | 12 | 7 | ||
Good | 6 | 26 | 29.343 | 0.0001 | |
Poor | 35 | 66 | |||
Breed | Crossbred | 8 | 24 | ||
Friesland | 36 | 55 | |||
Jersey | 9 | 20 | 25.503 | 0.0001 |
Coefficients: | ||||
---|---|---|---|---|
Estimate | Std. Error | t-Value | p-Value | |
intercept | 1.45 | 0.27 | 5.470 | 1.9407 *** |
Treatment of animals | −0.07 | 0.14 | −0.470 | 0.0001 *** |
Common anthelmintics used | 0.06 | 0.03 | 2.002 | 0.04 * |
Product rotation | −0.84 | 0.22 | 1.79 | 0.000 *** |
Prevention | 0.66 | 0.17 | 14.81 | 0.000 *** |
Control | 0.83 | 0.41 | 4.049 | 0.04 * |
Covariate | Levels | Estimates | Odd Ratios | p-Values |
---|---|---|---|---|
Intercept | <0.0001 | |||
Gender | Male vs. Female | 0.72 | 2.43 | 0.001 |
Age | <21 vs. 21–30 vs. 31–40 vs. >40 | 0.21 | 2.51 | <0.0001 |
Education | Primary vs. Secondary vs. Tertiary | 0.81 | 3.05 | <0.0001 |
Studied Agric. | Yes vs. No | 0.14 | 2.14 | <0.0001 |
Experience | <10 vs. 10–20 vs. > 20 | 0.20 | 2.43 | <0.0001 |
Region | Inland vs. Coastal | 0.11 | 1.15 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpisana, Z.; Yawa, M.; Slayi, M.; Nyangiwe, N.; Oguttu, J.; Jaja, I.F. Knowledge and Awareness of Bovine Fasciolosis Among Dairy Farm Personnel in the Eastern Cape Province, South Africa. Parasitologia 2025, 5, 33. https://doi.org/10.3390/parasitologia5030033
Mpisana Z, Yawa M, Slayi M, Nyangiwe N, Oguttu J, Jaja IF. Knowledge and Awareness of Bovine Fasciolosis Among Dairy Farm Personnel in the Eastern Cape Province, South Africa. Parasitologia. 2025; 5(3):33. https://doi.org/10.3390/parasitologia5030033
Chicago/Turabian StyleMpisana, Zuko, Mandla Yawa, Mhlangabezi Slayi, Nkululeko Nyangiwe, James Oguttu, and Ishmael Festus Jaja. 2025. "Knowledge and Awareness of Bovine Fasciolosis Among Dairy Farm Personnel in the Eastern Cape Province, South Africa" Parasitologia 5, no. 3: 33. https://doi.org/10.3390/parasitologia5030033
APA StyleMpisana, Z., Yawa, M., Slayi, M., Nyangiwe, N., Oguttu, J., & Jaja, I. F. (2025). Knowledge and Awareness of Bovine Fasciolosis Among Dairy Farm Personnel in the Eastern Cape Province, South Africa. Parasitologia, 5(3), 33. https://doi.org/10.3390/parasitologia5030033