The metalloid arsenic (As) and the metals lead (Pb) and mercury (Hg), which together we call the “Toxic Triad”, are among the pollutants of greatest global concern, harming the health of millions of people and contributing to biodiversity loss. The widespread distribution of
[...] Read more.
The metalloid arsenic (As) and the metals lead (Pb) and mercury (Hg), which together we call the “Toxic Triad”, are among the pollutants of greatest global concern, harming the health of millions of people and contributing to biodiversity loss. The widespread distribution of As, Pb and Hg facilitates the exposure of humans and other species to these elements simultaneously, potentially amplifying their individual toxic effects. While As, Pb and Hg are well established as toxic elements, the mechanisms by which they interact with genetic material and impact the health of various species remain incompletely understood. This is particularly true regarding the combined effects of these three elements. In this context, the objective of this work was to perform a toxicogenomic analysis of As, Pb and Hg to highlight multiple aspects of element-gene interactions, in addition to revisiting information on the genotoxicity and carcinogenicity of the Toxic Triad. By using The Comparative Toxicogenomics Database, it was possible to identify that As interacts with 7666 genes across various species, while Pb influences 3525 genes, and Hg affects 692 genes. Removing duplicate gene names, the three elements interact with 9763 genes across multiple species. Considering the top-20 As/Pb/Hg-interacting genes, catalase (
CAT), NFE2 like bZIP transcription factor 2 (
NFE2L2), caspase 3 (
CASP3), heme oxygenase (
HMOX1), tumor necrosis factor (
TNF), NAD(P)H quinone dehydrogenase 1 (
NQO1) and interleukin 6 (
IL6) were the most frequently observed. In total, 172 genes have the potential to interact with the three elements. Gene ontology analysis based on those genes evidenced that the Toxic Triad affects several cellular compartments and molecular functions, highlighting its effect on stimulation of toxic stress mechanisms. These 172 genes are also associated with various diseases, especially those of the urogenital tract, as well as being related to biological pathways involved in infectious diseases caused by viruses, bacteria and parasites. Arsenic was the element with the best-substantiated genotoxic and carcinogenic activity. This article details, through a toxicogenomic approach, the genetic bases that underlie the toxic effects of As, Pb and Hg.
Full article