Heavy Metals in Milk and Dairy Products: Safety and Analysis
Abstract
1. Introduction
2. The Impact of Heavy Metals on Human Health
Element | Main Source of Pollution | Consequences on Human Health |
---|---|---|
Cd | Phosphate fertilizers; industrial emissions; mining; smelting and refining of Cu and Ni; and production of pigments, plastics, and batteries | Neurotoxicity, carcinogenicity, nephrotoxicity, bone damage, liver toxicity, cardiovascular diseases, respiratory system effects, reproductive system effects, and fetal tissue damage. |
Pb | Mining; smelting; and manufacture of batteries, paints, and gasoline | Cardiovascular diseases, neurotoxicity, nephrotoxicity, hematological changes (anemia), decreased cognitive function, miscarriage, infertility, and behavioral disorders. |
Hg | Iron, steel, and cement industries; gold mining; recycling; batteries; fungicides; antiseptics; and disinfectants | Cardiovascular diseases, central nervous system damage, gastrointestinal disorders, immune system effects, renal and pulmonary dysfunction, ocular toxicity, dermatological effects, acrodynia, and excessive salivation. |
As | Pesticides; herbicides; and insecticides | Cardiovascular diseases, liver damage, skin damage, central nervous system damage, gastrointestinal disorders, neurotoxicity, kidney, and lung and bladder cancer. |
3. Heavy Metals in Milk and Dairy Products
3.1. Sources of Contamination
3.2. Regulatory Limits
3.3. Analytical Methodologies
3.4. Reported Heavy Metal Levels in Milk and Dairy Products
3.5. Risk Assessment
- EDI is the estimated daily intake (mg/kg·body weight/day), and
- RfD is the reference dose (mg/kg body weight/day), a threshold below which adverse health effects are unlikely to occur.
- DC is the daily consumption of the product (kg/day),
- Cm is the mean concentration of the metal or metalloid (m) in the product (mg/kg), and
- BW is the body weight (kg).
- BMDL is the benchmark dose lower confidence limit, expressed in mg/kg body weight/day, represents the lower confidence limit of the benchmark dose (BMD), a statistically estimated dose of a substance that produces a predefined low level of adverse effect (e.g., 1% or 10% increase in risk) in a population, and
- EDI is the estimated daily intake, expressed in mg/kg body weight/day, that reflects the actual human exposure from dietary or environmental sources.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
AAS | Atomic absorption spectroscopy |
BMDL | Benchmark dose lower confidence limit |
BW | Body weight |
Cm | Average concentration of the metal or metalloid m in the product |
CV-AAS | Chemical vapor generation atomic absorption spectroscopy |
DC | Daily product consumption |
EDI | Estimated daily intake |
EFSA | European Food Safety Authority |
EPA | Environmental Protection Agency |
ET-AAS | Electrothermal atomic absorption spectroscopy |
F-AAS | Flame atomic absorption spectroscopy |
FAO | Food and Agriculture Organization |
FDA | Food and Drug Administration |
HM | Heavy metal |
ICP-MS | Inductively coupled plasma mass spectrometry |
ICP-OES | Inductively coupled plasma optical emission spectroscopy |
JECFA | Joint FAO/WHO Expert Committee on Food Additives |
MOE | Margin of exposure |
PTDI | Provisional tolerable daily intake |
PTMI | Provisional tolerable monthly intake |
PTWI | Provisional tolerable weekly intake |
RfD | Reference dose |
THQ | Target hazard quotient |
TTHQ | Total target hazard quotient |
TWI | Tolerable weekly intake |
WHO | World Health Organization |
References
- Jaafarzadeh, N.; Tari, K.; Samarghandi, M.R.; Panahi Fard, M.; Jorfi, S.; Feizi, R.; Mehrbakhsh, M. Non-carcinogenic risk assessment of cadmium and lead in raw milk from dairy production farms in Iran, using Monte Carlo Simulation approach. J. Food Compos. Anal. 2023, 115, 104864. [Google Scholar] [CrossRef]
- Olowoyo, J.O.; Mutemula, M.L.; Agbool, O.O.; Mugivhisa, L.L.; Olatunji, O.O.; Oladeji, O.M. Trace metals concentrations in fresh milk from dairy farms and stores: An assessment of human health risk. Toxicol. Rep. 2024, 12, 361–368. [Google Scholar] [CrossRef]
- Alam, M.N.E.; Ullah, A.K.M.A.; Hosen, M.M.; Maksud, M.A.; Khan, S.R.; Akon, S.; Nahar, Q.; Jolly, F.; Quraishi, S.B. Evaluation of essential and trace metals/metalloids distribution and probable human health risk implications from branded liquid and powder milks available in Dhaka City, Bangladesh. Biometals 2024, 37, 859–875. [Google Scholar] [CrossRef]
- Năstăsescu, V.; Mititelu, M.; Goumenou, M.; Docea, A.O.; Renieri, E.; Udeanu, D.I.; Oprea, E.; Arsene, A.L.; Dinu-Pîrvu, C.E.; Ghica, M. Heavy metal and pesticide levels in dairy products: Evaluation of human health risk. Food Chem. Toxicol. 2020, 146, 111844. [Google Scholar] [CrossRef]
- Boudebbouz, A.; Boudalia, S.; Bousbia, A.; Habila, S.; Boussadia, M.I.; Gueroui, Y. Heavy metals levels in raw cow milk and health risk assessment across the globe: A systematic review. Sci. Total Environ. 2021, 751, 141830. [Google Scholar] [CrossRef]
- Kamal, G.M.; Rehmani, M.; Iqbal, S.; Uddin, J.; Nazir, S.; Rehman, J.; Hussain, A. The determination of potentially toxic elements (PTEs) in milk from the Southern Cities of Punjab, Pakistan: A health risk assessment study. J. Food Compos. Anal. 2022, 108, 104446. [Google Scholar] [CrossRef]
- Elafify, M.; El-toukhy, M.; Sallam, K.; Sadoma, N.; Abd-Elghany, S.; Abdelkhalek, A.; El-Baz, A. Heavy metal residues in milk and some dairy products with insight into their health risk assessment and the role of Lactobacillus rhamnosus in reducing the lead and cadmium load in cheese. Food Chem. Adv. 2023, 2, 100261. [Google Scholar] [CrossRef]
- FAO. Milk and Dairy: Questions and Answers. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/fileadmin/user_upload/newsroom/docs/Milk%20and%20Dairy%20Q&A.pdf (accessed on 2 February 2025).
- Castro-Bedriñana, J.; Chirinos-Peinado, D.; Ríos-Ríos, E.; Castro-Chirinos, G.; Chagua-Rodríguez, P.; De La Cruz-Calderón, G. Lead, cadmium, and arsenic in raw cow’s milk in a central Andean area and risks for the Peruvian populations. Toxics 2023, 11, 809. [Google Scholar] [CrossRef]
- Bakircioglu, D.; Topraksever, N.; Yurtsever, S.; Kizildere, M.; Kurtulus, Y.B. Investigation of macro, micro and toxic element concentrations of milk and fermented milk products by using an inductively coupled plasma optical emission spectrometer, to improve food safety in Turkey. Microchem. J. 2018, 136, 133–138. [Google Scholar] [CrossRef]
- FAO. Gateway to Dairy Production and Products. Available online: https://www.fao.org/dairy-production-products/products/en/ (accessed on 2 February 2025).
- FAO; OECD. Dairy and Dairy Products—OECD-FAO Agricultural Outlook 2019–2028. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/2577ae88-f8de-4a5d-a931-4c4d6ba5aac3/content (accessed on 2 February 2025).
- Zhou, X.; Qu, X.; Zheng, N.; Su, C.; Wang, J.; Soyeurt, H. Large scale study of the within and between spatial variability of lead, arsenic, and cadmium contamination of cow milk in China. Sci. Total Environ. 2019, 650 Pt 2, 3054–3061. [Google Scholar] [CrossRef]
- Akele, M.L.; Abebe, D.Z.; Alemu, A.K.; Assefa, A.G.; Madhusudhan, A.; de Oliveira, R.R. Analysis of trace metal concentrations in raw cow’s milk from three dairy farms in North Gondar, Ethiopia: Chemometric approach. Environ. Monit. Assess. 2017, 189, 499. [Google Scholar] [CrossRef]
- Al Sidawi, R.; Ghambashidze, G.; Urushadze, T.; Ploeger, A. Heavy metal levels in milk and cheese produced in the Kvemo Kartli region, Georgia. Foods 2021, 10, 2234. [Google Scholar] [CrossRef]
- Rafiq, A.; Shah, M.H.; Mohany, M.; Tahir, A.A.; Elsadek, M.F.; Qayyum, M.A.; Abbasi, A.M. Evaluation of Potentially Toxic Trace Metals and Associated Health Risk Assessment in Buffalo Milk. Int. J. Environ. Res. Public Health 2022, 19, 14678. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.S.; Awaad, S.S.; Shehta, H.A.; Hegab, O.W. Dietary Exposure and Health Risk Assessment of Selected Toxic and Essential Metals in Various Flavored Dairy Products. Biol. Trace Elem. Res. 2025. Advance online publication. [Google Scholar] [CrossRef]
- Antunović, Z.; Mioč, B.; Novoselec, J.; Širić, I.; Držaić, V.; Klir Šalavardić, Ž. Essential trace and toxic element content in Lacaune sheep milk during lactation. Foods 2023, 12, 4291. [Google Scholar] [CrossRef]
- Zharykbasov, Y.; Kakimova, Z.; Kakimov, A.; Zharykbasova, K.; Mirasheva, G.; Ibragimov, N.; Toleubekova, S.; Muratbayev, A.; Tulkebayeva, G.; Yessimbekov, Z. Studying the concentration of xenobiotics in milk and developing the biosensor method for their rapid determination. Heliyon 2023, 9, e19026. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, M.; Carvalho, T.; Silva, I. Concentration of heavy metals in UHT dairy milk available in the markets of São Luís, Brazil, and potential health risk to children. Food Chem. 2021, 346, 128961. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels of Certain Contaminants in Foodstuffs; Official Journal of the European Union, L119, 5 May 2023; Publications Office of the European Union: Brussels, Belgium, 2023; pp. 103–157. [Google Scholar]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Aggarwal, A.; Verma, T.; Ghosh, S. Heavy metal residues in milk and milk products and their detection method. In Trends and Innovations in Food Science; El Samragy, Y., Ed.; IntechOpen: London, UK, 2022; pp. 1–13. [Google Scholar] [CrossRef]
- Dağcilar, K.; Gezer, C. Heavy metal residues in milk and dairy products produced in Northern Cyprus. Prog. Nutr. 2021, 23, e2021019. [Google Scholar] [CrossRef]
- Kafouris, D.; Christoforou, E.; Stefani, D.; Sarandi, A.; Stavroulakis, G.; Christou, E.; Yiannopoulos, S. Lead, Cadmium and Mercury Determination and Human Health Risk Assessment in Foods from Cyprus. J. Food Compos. Anal. 2024, 128, 106007. [Google Scholar] [CrossRef]
- Hasanvand, S.; Hashami, Z.; Zarei, M.; Merati, S.; Bashiry, M.; Nag, R. Is the milk we drink safe from elevated concentrations of prioritised heavy metals/metalloids?—A global systematic review and meta-analysis followed by a cursory risk assessment reporting. Sci. Total Environ. 2024, 948, 175011. [Google Scholar] [CrossRef]
- Alinezhad, Z.; Hashemi, M.; Tavakoly Sany, S.B. Concentration of heavy metals in pasteurized and sterilized milk and health risk assessment across the globe: A systematic review. PLoS ONE 2024, 19, e0296649. [Google Scholar] [CrossRef]
- Hassan, T.; Elarnaoutti, M.S. Heavy Metals Transfer from Milk into Milk Products. Turk. J. Agric. Food Sci. Technol. 2025, 13, 900–906. [Google Scholar] [CrossRef]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Özbay, S.; Dikici, E.; Soylukan, C. Evaluation of biological (feed, water), seasonal, and geological factors affecting the heavy metal content of raw milk. J. Food Compos. Anal. 2023, 121, 105401. [Google Scholar] [CrossRef]
- Chirinos-Peinado, D.; Castro-Bedriñana, J.; Barnes, E.P.G.; Ríos-Ríos, E.; García-Olarte, E.; Castro-Chirinos, G. Assessing the Health Risk and Trophic Transfer of Lead and Cadmium in Dairy Farming Systems in the Mantaro Catchment, Central Andes of Peru. Toxics 2024, 12, 308. [Google Scholar] [CrossRef] [PubMed]
- Ayangbenro, A.S.; Babalola, O.O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, B.O.; Ezejiofor, A.N.; Igweze, Z.N.; Orisakwe, O.E. Heavy metal mixture exposure and effects in developing nations: An update. Toxics 2018, 6, 65. [Google Scholar] [CrossRef]
- Jolly, Y.N.; Iqbal, S.; Rahman, M.S.; Kabir, J.; Akter, S.; Ahmad, I. Energy dispersive X-ray fluorescence detection of heavy metals in Bangladesh cows’ milk. Heliyon 2017, 3, e00403. [Google Scholar] [CrossRef]
- Monteverde, V.; Camilleri, G.; Arfuso, F.; Pennisi, M.; Perillo, L.; Patitò, G.; Gioia, G.; Castronovo, C.; Piccione, G. Heavy Metal Levels in Milk and Serum of Dairy Cows from Different Farms Located near an Industrial Area. Animals 2022, 12, 2574. [Google Scholar] [CrossRef]
- Scutarașu, E.C.; Trincă, L.C. Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods. Foods 2023, 12, 3340. [Google Scholar] [CrossRef]
- Dghaim, R.; Khatib, S.A.; Rasool, H.; Khan, M.A. Determination of heavy metals concentration in traditional herbs commonly consumed in the United Arab Emirates. J. Environ. Public Health 2015, 2015, 973878. [Google Scholar] [CrossRef]
- Sharafi, K.; Yunesian, M.; Nodehi, R.N.; Mahvi, A.H.; Pirsaheb, M. A systematic literature review for some toxic metals in widely consumed rice types (domestic and imported) in Iran: Human health risk assessment, uncertainty and sensitivity analysis. Ecotoxicol. Environ. Saf. 2019, 176, 64–75. [Google Scholar] [CrossRef]
- Ding, Q.; Li, C.; Wang, H.; Xu, C.; Kuang, H. Electrochemical detection of heavy metal ions in water. Chem. Commun. 2021, 57, 7215. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Mazzocco, J.; Jagadapillai, R.; Gozal, E.; Kong, M.; Xu, Q.; Barnes, G.; Freedman, J. Disruption of essential metal homeostasis in the brain by cadmium and high-fat diet. Toxicol. Rep. 2020, 7, 1164–1169. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Wang, S.; Liu, Q.; Feng, H.; Ma, X.; Guo, J. Electrochemical microfluidics techniques for heavy metal ion detection. Analyst 2018, 143, 4230–4246. [Google Scholar] [CrossRef] [PubMed]
- Tinkov, A.A.; Filippini, T.; Ajsuvakova, O.P.; Skalnaya, M.G.; Aaseth, J.; Bjørklund, G.; Gatiatulina, E.R.; Popova, E.V.; Nemereshina, O.N.; Huang, P.T.; et al. Cadmium and atherosclerosis: A review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ. Res. 2018, 162, 240–260. [Google Scholar] [CrossRef] [PubMed]
- Norouzirad, R.; González-Montaña, J.R.; Martínez-Pastor, F.; Hosseini, H.; Shahrouzian, A.; Khabazkhoob, M.; Ali Malayeri, F.; Moallem Bandani, H.; Paknejad, M.; Foroughi-Nia, B.; et al. Lead and cadmium levels in raw bovine milk and dietary risk assessment in areas near petroleum extraction industries. Sci. Total Environ. 2018, 635, 308–314. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Christophoridis, C.; Kosma, A.; Evgenakis, M.; Bourliva, A.; Fytianos, K. Determination of heavy metals and health risk assessment of cheese products consumed in Greece. J. Food Compos. Anal. 2019, 82, 103238. [Google Scholar] [CrossRef]
- Pérez-Carrera, A.L.; Arellano, F.E.; Fernández-Cirelli, A. Concentration of trace elements in raw milk from cows in the southeast of Córdoba province, Argentina. Dairy Sci. Technol. 2016, 96, 591–602. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, N.; Su, C.; Wang, J.; Soyeurt, H. Relationships between Pb, As, Cr, and Cd in individual cows’ milk and milk composition and heavy metal contents in water, silage, and soil. Environ. Pollut. 2019, 255 Pt 2, 113322. [Google Scholar] [CrossRef]
- Tyler, C.R.; Allan, A.M. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: A review. Curr. Environ. Health Rep. 2014, 1, 132–147. [Google Scholar] [CrossRef]
- Djamgoz, M.B.; Akun, E.; Arslan, B. Cancer in North Cyprus: 1. Current status, an overview. Cyprus J. Med. Sci. 2017, 2, 9–12. [Google Scholar] [CrossRef]
- FAO/WHO—Codex Alimentarius Commission. General Standard for Contaminants and Toxins in Food and Feed (CXS 193-1995); Updated 2023; FAO: Rome, Italy, 1995; Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (accessed on 23 July 2025).
- European Commission. Regulation (EU) 2023/465 of 3 March 2023 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Arsenic in Certain Foods; Official Journal of the European Union, L 68, 6 March 2023; Publications Office of the European Union: Brussels, Belgium, 2023; pp. 51–54. [Google Scholar]
- European Commission. Regulation (EU) 2018/73 of 16 January 2018 Amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Mercury Compounds in or on Certain Products; Official Journal of the European Union, L 13, 18 January 2018; Publications Office of the European Union: Brussels, Belgium, 2018; pp. 8–20. [Google Scholar]
- US Food and Drug Administration (FDA). Final Guidance for Industry: Action Levels for Lead in Processed Foods Intended for Babies and Young Children; FDA: Silver Spring, MD, USA, 2025. Available online: https://www.fda.gov/media/164684/download (accessed on 23 July 2025).
- Zwierzchowski, G.; Ametaj, B.N. Mineral Elements in the Raw Milk of Several Dairy Farms in the Province of Alberta. Foods 2019, 8, 345. [Google Scholar] [CrossRef]
- Pekou, A.; Manousi, N.; Zachariadis, G.A. Multielemental Method for Maternal Breast Milk Analysis by Inductively Coupled Plasma–Atomic Emission Spectrometry (ICP-AES) and Acid Digestion. Anal. Lett. 2023, 56, 14–24. [Google Scholar] [CrossRef]
- Silalahi, E.M.; Lioe, H.N.; Faridah, D.N. Heavy Metals Cd, Hg, and Pb in Fresh Milk from Dairy Farms in South Jakarta Analyzed by ICP-MS. Trop. Anim. Sci. J. 2023, 46, 502–508. [Google Scholar] [CrossRef]
- Chen, H.; Yao, Y.; Zhang, C.; Ping, J. Determination of heavy metals ions in infant milk powder using a nanoporous carbon modified disposable sensor. Foods 2023, 12, 730. [Google Scholar] [CrossRef]
- Pedersen-Bjergaard, S.; Gammelgaard, B.; Halvorsen, T.G. Introduction to Pharmaceutical Analytical Chemistry, 2nd ed.; Wiley: Chichester, UK, 2019; pp. 157–167. ISBN 9781119362739. [Google Scholar]
- Paixão, L.B.; Brandão, G.C.; Araujo, R.G.O.; Korn, M.G.A. Assessment of cadmium and lead in commercial coconut water and industrialized coconut milk employing HR-CS GF AAS. Food Chem. 2019, 284, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Sahin, D. Atomic spectroscopy. In Modern Spectroscopic Techniques and Applications; Khan, M., Nascimento, G.M., El Azazy, M., Eds.; IntechOpen: London, UK, 2019; pp. 1–13. [Google Scholar] [CrossRef]
- CS Analytical. Comparison of Atomic Spectroscopy Techniques the Advantages of ICP-MS vs AA & ICP-OES. Available online: https://csanalytical.com/comparison-atomic-spectroscopy-techniques-advantages-icp-ms-vs-aa-icp-oes/ (accessed on 18 January 2025).
- Esposito, M.; Miedico, O.; Cavallo, S.; Pellicanò, R.; Rosato, G.; Baldi, L.; Chiaravalle, E. Trace elements in raw milk of buffaloes (Bubalus bubalis) from Campania, Italy. Food Chem. 2017, 233, 378–384. [Google Scholar] [CrossRef]
- Qu, X.Y.; Zheng, N.; Zhou, X.W.; Li, S.L.; Wang, J.Q.; Zhang, W.J. Analysis and Risk Assessment of Seven Toxic Element Residues in Raw Bovine Milk in China. Biol. Trace Elem. Res. 2018, 183, 92–101. [Google Scholar] [CrossRef]
- Barone, G.; Dambrosio, A.; Storelli, A.; Busco, A.; Ioanna, F.; Quaglia, N.; Giacominelli-Stuffler, R.; Storelli, M.M. Traditional Italian cheeses: Trace element levels and estimation of dietary intake. J. Food Compos. Anal. 2018, 66, 179–185. [Google Scholar] [CrossRef]
- Castro-González, N.P.; Calderón-Sánchez, F.; Castro de Jesús, J.; Moreno-Rojas, R.; Tamariz-Flores, J.V.; Pérez-Sato, M.; Soní-Guillermo, E. Heavy metals in cow’s milk and cheese produced in areas irrigated with waste water in Puebla, Mexico. Food Addit. Contam. Part B 2018, 11, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Chirinos-Peinado, D.M.; Castro-Bedriñana, J.I. Lead and cadmium blood levels and transfer to milk in cattle reared in a mining area. Heliyon 2020, 6, e03579. [Google Scholar] [CrossRef] [PubMed]
- Castro-Bedriñana, J.; Chirinos-Peinado, D.; Ríos-Ríos, E.; Machuca-Campuzano, M.; Gómez-Ventura, E. Dietary risk of milk contaminated with lead and cadmium in areas near mining-metallurgical industries in the Central Andes of Peru. Ecotoxicol. Environ. Saf. 2021, 220, 112382. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Niu, C.; Li, X.; Wang, F.; Jiang, S.; Li, K.; Yao, Z. Heavy metal levels in milk and dairy products and health risk assessment: A systematic review of studies in China. Sci. Total Environ. 2022, 851 Pt 1, 158161. [Google Scholar] [CrossRef]
- Yang, S.; Bhargava, N.; O’Connor, A.; Gibney, E.R.; Feeney, E.L. Dairy consumption in adults in China: A systematic review. BMC Nutr. 2023, 9, 116. [Google Scholar] [CrossRef]
- Ribeiro, I.; Gomes, M.; Figueiredo, D.; Lourenço, J.; Paúl, C.; Costa, E. Dairy Product Intake in Older Adults across Europe Based on the SHARE Database. J. Nutr. Gerontol. Geriatr. 2019, 38, 297–306. [Google Scholar] [CrossRef]
- Headey, D.D.; Alderman, H.; Hoddinott, J.; Narayanan, S. The glass of milk half-empty? Dairy development and nutrition in low and middle income countries. Food Policy 2024, 122, 102585. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Update of the risk assessment of inorganic arsenic in food. EFSA J. 2024, 22, 8488. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency (EPA). Lead at Superfund Sites: Risk Assessment. Washington, DC, USA. Available online: https://www.epa.gov/superfund/lead-superfund-sites-risk-assessment (accessed on 25 July 2025).
- US Environmental Protection Agency (EPA). Reference Dose (RfD): Description and Use in Health Risk Assessments. Washington, DC, USA. Available online: https://www.epa.gov/iris/reference-dose-rfd-description-and-use-health-risk-assessments (accessed on 25 July 2025).
- Kerdoun, M.A.; Djafer, R. Heavy metal levels in camel milk and health risk assessment: A global systematic review. J. Trace Elem. Miner. 2024, 8, 100131. [Google Scholar] [CrossRef]
- Xiong, C.; Petursdottir, A.H.; Rikhardsson, G.; Stergiadis, S.; Raab, A.; Feldmann, J. Speciation of Arsenic in Milk from Cows Fed Seaweed. J. Sci. Food Agric. 2024, 104, 6957–6965. [Google Scholar] [CrossRef]
- Iwai, K.; Iwai-Shimada, M.; Tatsuta, N.; Kobayashi, Y.; Asato, K.; Nishimoto, M.; Nakai, K.; Nakayama, S.F. High-Throughput Mercury Speciation Analysis of Breast Milk Using HPLC-ICP-MS. Microchem. J. 2025, 211, 113142. [Google Scholar] [CrossRef]
Method 1 | Detection Limits | Working Range | Precision | Sensitivity | Sampling Rate | Equipment Cost |
---|---|---|---|---|---|---|
F-AAS | 10–1000 μg/L | 102 | 0.1–1% | low | 10–15 sec/element | low |
ET-AAS | 0.01–1 μg/L | 102 | 0.5–5% | high | 3–4 min/element | medium |
CV-AAS | 0.01–0.1 μg/L | 102 | 2–5% | very high | 4–12 min/element | medium |
ICP-OES | 0.1–10 μg/L | 105 | 0.1–2% | moderate to high | >50 elements/min | high |
ICP-MS | <ng/L | 108 | 0.5–2% | very high | >50 elements/min | very high |
Reference | Samples/Location | Methodology | Heavy Metal Levels (mg/kg) 2 | |||
---|---|---|---|---|---|---|
As | Cd | Hg | Pb | |||
[64] Esposito et al. (2017) | 68 (raw milk)/Italy | ICP-MS | 0.00302 ± 0.0017 (range: 0.0042–0.00943) | 5.35 × 10−4 ± 5.3 × 10−4 (range: 4.4 × 10−4–0.00303) | 7.81 × 10−4 ± 1.5 × 10−4 (range: 0.0015–0.00165) | 0.00522 ± 0.0067 (range: 0.00126–0.0526) |
[65] Qu et al. (2018) | 178 (raw milk)/China | ICP-MS | 1.31 × 10−3 ± 3.11 × 10−4 (range: 1.0 × 10−3–2.23 × 10−3) | n.d. 3 | 2.24 × 10−3 ± 1.36 × 10−3 (range: 9.90 × 10−4–7.35 × 10−3) | 8.25 × 10−3 ± 7.20 × 10−3 (range 1.95 × 10−3–0.03) |
[45] Norouzirad et al. (2018) | 118 (raw milk)/Iran | ET-AAS | - | 0.0047 ± 0.0010 | - | 0.047 ± 0.0039 |
[66] Barone et al. (2018) | 79 (hard and fresh cheeses)/Italy | ET-AAS (Cd and Pb) and CV-AAS (Hg) | - | 0.004 ± 0.001 (range: 0.002–0.01) (hard cheeses) 0.002 ± 0.002 (range: n.d.–0.01) (fresh cheeses) | 0.08 ± 0.03 (range: 0.04–0.13) (hard cheeses) 0.04 ± 0.02 (range: 0.02–0.07) (fresh cheeses) | 0.13 ± 0.10 (range: 0.03–0.37) (hard cheeses) 0.07 ± 0.04 (range: 0.03–0.17) (fresh cheeses) |
[67] Castro-Gonzalez et al. (2018) | 252 (60 raw milk, 84 curd, 84 whey, 12 Oaxaca cheese, and 12 Ranchero cheese)/Mexico | ICP-OES | 0.12 ± 0.08 (raw milk) 0.07 ± 0.05 (curd) 0.52 ± 0.4 (whey) 0.17 ± 0.1 (Oaxaca cheese) 0.16 ± 0.07 (Ranchero cheese) | - | - | 0.03 ± 0.01 (raw milk) 0.02 ± 0.00 (curd) 0.07 ± 0.02 (whey) 0.05 ± 0.03 (Oaxaca cheese) 0.11 ± 0.04 (Ranchero cheese) |
[13] Zhou et al. (2019) | 997 (raw milk)/China | ICP-MS | 3.01 × 10−4 ± 9.90 × 10−4 (range: 4.8 × 10−5–0.01531) | 5 × 10−5 ± 7 × 10−5 (range: 1 × 10−6–6.7 × 10−4) | - | 1.70 × 10−3 ± 3.62 × 10−3 (range: 1.4 × 10−4–0.03748) |
[68] Chirinos-Peinado et al. (2020) | 20 (raw milk)/Peru | F-AAS | - | 0.0197 ± 0.0073 (range: 0.0110–0.0320) | - | 0.58 ± 0.018 (range: 0.540–0.600) |
[69] Castro-Bedriñana et al. (2021) | 40 (raw milk)/Peru | F-AAS | - | 0.01835 ± 0.0054 | - | 0.577 ± 0.018 |
[1] Jaafarzadeh et al. (2023) | 100 (raw milk)/Iran | ICP-OES | - | 0.0030 ± 0.0004 | - | 0.53 ± 0.09 |
[7] Elafify et al. (2023) | 200 (50 raw milk, 50 powdered milk, 50 fresh cheese, and 50 processed cheese)/Egypt | CV-AAS (As and Hg) and F-AAS (Pb and Cd) | 0.012 (raw milk) 0.120 (powdered milk) 0.0764 (fresh cheese) 0.052 (processed cheese) | 0.07 (raw milk) 0.1252 (powdered milk) 0.1172 (fresh cheese) 0.0576 (processed cheese) | 0.0014 (raw milk) 0.0204 (powdered milk) 0.0378 (fresh cheese) 0.0022 (processed cheese) | 0.1016 (raw milk) 0.3352 (powdered milk) 0.2924 (fresh cheese) 0.1256 (processed cheese) |
[32] Chirinos-Peinado et al. (2024) | 120 (raw milk)/Peru | F-AAS | - | 0.178 (range: 0.001–0.69) | - | 0.217 (range: 0.001–0.60) |
[3] Alam et al. (2024) | 46 (16 processed liquid and 30 powder milk)/Bangladesh | CV-AAS (As and Hg) and ET-AAS (Pb and Cd) | <2.9 × 10−3–4.85 × 10−3 | <9.7 × 10−4–0.0165 ± 9.7 × 10−4 | <9.7 × 10−4–8.25 × 10−3 ± 3.9 × 10−4 | <5.82 × 10−3–0.0665 ± 2.9 × 10−3 |
[2] Olowoyo et al. (2024) | 15 (raw milk: 7 from dairy farm and 8 from stores)/South Africa | ICP-MS | 0.017 ± 0.017 to 0.028 ± 0.017 (farm milk) 0.020 ± 0.032 to 0.028 ± 0.040 (milk from stores) | - | - | 0.016 ± 0.003 to 0.070 ± 0.077 (farm milk) 0.013 ± 0.007 to 0.035 ± 0.017 (milk from stores) |
[17] Ibrahim et al. (2025) | 180 (30 UHT milk, 30 flavored milk, 30 milk powder, 30 yogurt, 30 drinking yogurt, and 30 ice cream)/Egypt | ICP-MS/MS | 0.0016 ± 0.001 (flavored milk) 0.009 ± 0.005 (milk powder) 0.02 ± 0.003 and 0.037 ± 0.031 (yogurt) 0.0034 ± 0.0025 (drinking yogurt) 0.005 ± 0.004 (ice cream) | n.d. 3 | n.d. 3 | 0.027 ± 0.004 and 0.073 ± 0.058 (UHT) 0.028 ± 0.004 and 0.004 ± 0.003 (flavored milk) 0.075 ± 0.014 and 0.005 ± 0.001 (milk powder) 0.090 ± 0.036 and 0.059 ± 0.026 (yogurt) 0.104 ± 0.052 and 0.025 ± 0.0123 (drinking yogurt) 0.051 ± 0.042 and 0.068 ± 0.039 (ice cream) |
Toxic Element | EPA | EFSA | JECFA | |||
---|---|---|---|---|---|---|
RfD (mg/kg BW/day) | Current Approach | TWI (µg/kg BW/week) | Current Approach | PTWI (µg/kg BW/week) | Current Approach | |
Pb | 0.0036 1 | No RfD; MOE/biokinetic modeling | Not established | MOE | 25 3 | MOE |
Cd | 0.001 | RfD | 2.5 | TWI | 5.8 4 | PTMI |
Hg (inorganic) | 0.0003 | RfD | 4 | TWI | 4 | PTWI |
As (inorganic) | 0.0003 2 | No RfD; MOE | Not established | MOE | Not established | MOE |
Reference | Location | Product | Population Group | Element | EDI (mg/kg body weight/day) | Approach Used | %PTDI or %BMDL | MOE | THQ 1 |
---|---|---|---|---|---|---|---|---|---|
[2] Olowoyo et al. (2024) | South Africa | Fresh cow milk | Adults | As | RfD (EPA) | 0.125–0.201 | |||
Pb | 0.008–0.042 | ||||||||
[45] Norouzirad et al. (2018) | Iran | Raw cow milk | Adults | Cd | 1.1 × 10−5 | TWI (JECFA) | |||
Pb | 1.1 × 10−4 | ||||||||
[65] Qu et al. (2018) | China | Raw cow milk | Children (1–5 years) | As | BMDL01 (3 μg/kg BW/day) | 42–123 | |||
Pb | BMDL01 (0.5 μg/kg BW/day) | 1.1–3.3 | |||||||
Adults | As | BMDL01 (3 μg/kg BW/day) | 444 | ||||||
Pb | BMDL10 (0.63 μg/kg BW/day) | 14.8 | |||||||
[66] Barone et al. (2018) | Italy | Hard cheese | Adults | Cd | 1.43 × 10−2 | PTMI (JECFA) | 0.4 | ||
Hg | 7.86 × 10−2 | PTWI (JECFA) | 11.0 | ||||||
Pb | 0.1210 | PTWI (JECFA) | 3.4 | ||||||
Fresh cheese | Adults | Cd | 7.14 × 10−3 | PTMI (JECFA) | 0.2 | ||||
Hg | 3.28 × 10−2 | PTWI (JECFA) | 4.6 | ||||||
Pb | 6.57 × 10−2 | PTWI (JECFA) | 1.84 | ||||||
[69] Castro-Bedriñana et al. (2021) | Peru | Raw cow milk | Children (2–5 years) | Cd | 4.1 × 10−4–5.9 × 10−4 | PTWI (JECFA) | 49–71 | 5.42 | |
Pb | 1.29 × 10−4–1.86 × 10−4 | 358–517 | 3.61 | ||||||
Adults | Cd | 3 × 10−5–4 × 10−5 | 35–49 | <1 | |||||
Pb | 9.2 × 10−4–1.25 × 10−3 | 26–35 | <1 | ||||||
[1] Jaafarzadeh et al. (2023) | Iran | Raw cow milk | Adults | Cd | RfD (EPA) | 0.044 | |||
Pb | 0.314 | ||||||||
[7] Elafify et al. (2023) | Egypt | Raw milk | Adults | As | 1.01 × 10−5 | PTDI (JECFA) | 0.34 | ||
Cd | 5.89 × 10−5 | 7.1 | 0.0589 | ||||||
Hg | 1.18 × 10−6 | 0.51 | 0.0118 | ||||||
Pb | 8.56 × 10−5 | 13.59 | |||||||
Powdered milk | Adults | As | 1.01 × 10−4 | 0.69 | |||||
Cd | 1.05 × 10−4 | 12.65 | 0.105 | ||||||
Hg | 1.72 × 10−5 | 7.48 | 0.172 | ||||||
Pb | 2.82 × 10−4 | 44.76 | |||||||
Fresh cheese | Adults | As | 2.07 × 10−5 | 3.37 | |||||
Cd | 3.17 × 10−5 | 3.82 | 0.0317 | ||||||
Hg | 1.02 × 10−5 | 4.43 | 0.102 | ||||||
Pb | 7.92 × 10−5 | 12.57 | |||||||
Processed cheese | Adults | As | 1.41 × 10−5 | 0.47 | |||||
Cd | 1.56 × 10−5 | 1.88 | 0.0156 | ||||||
Hg | 5.95 × 10−7 | 0.26 | 0.00595 | ||||||
Pb | 3.40 × 10−5 | 5.4 | |||||||
[32] Chirinos-Peinado et al. (2024) | Peru | Raw cow milk | Children (<15 years) | Cd | 1.72 × 10−3–6.0 × 10−3 | TWI (JECFA) | 1.72–6.03 | ||
Pb | 2.10 × 10−3–7.36 × 10−3 | 0.60–2.10 | |||||||
Adults | Cd | 2.47 × 10−4–4.75 × 10−4 | 0.24–0.47 | ||||||
Pb | 2.94 × 10−4–5.79 × 10−4 | 0.08–0.17 | |||||||
[17] Ibrahim et al. (2025) | Egypt | Flavored processed milk | Toddlers (<10 kg) | As | 4 × 10−5–8 × 10−5 | RfD (EPA) | |||
Pb | 9 × 10−5–2.9 × 10−3 | ||||||||
Children (10–15 kg) | As | 3 × 10−5–5 × 10−5 | |||||||
Pb | 6 × 10−5–1.9 × 10−3 | ||||||||
Flavored powdered milk | Toddlers (<10 kg) | As | 3 × 10−5–5 × 10−5 | ||||||
Pb | 2 × 10−5–4 × 10−4 | ||||||||
Children (10–15 kg) | As | 2 × 10−5–4 × 10−5 | |||||||
Pb | 1 × 10−5–3 × 10−4 | ||||||||
[17] Ibrahim et al. (2025) | Egypt | Flavored yogurt | Toddlers (<10 kg) | As | 3 × 10−4–11 × 10−4 | RfD (EPA) | |||
Pb | 9 × 10−4–27 × 10−4 | ||||||||
Children (10–15 kg) | As | 2 × 10−4–8 × 10−4 | |||||||
Pb | 6 × 10−4–18 × 10−4 | ||||||||
Flavored drinking yogurt | Toddlers (<10 kg) | As | 7 × 10−5–2 × 10−4 | ||||||
Pb | 5 × 10−4–4.6 × 10−3 | ||||||||
Children (10–15 kg) | As | 5 × 10−5–1 × 10−4 | |||||||
Pb | 4 × 10−4–31 × 10−4 | ||||||||
Flavored ice cream | Toddlers (<10 kg) | As | 7 × 10−5–1 × 10−4 | ||||||
Pb | 8 × 10−4–20 × 10−4 | ||||||||
Children (10–15 kg) | As | 5 × 10−5–9 × 10−5 | |||||||
Pb | 5 × 10−4–1 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souto, M.R.S.; Pimenta, A.M.; Catarino, R.I.L.; Leal, M.F.C.; Simões, E.T.R. Heavy Metals in Milk and Dairy Products: Safety and Analysis. Pollutants 2025, 5, 29. https://doi.org/10.3390/pollutants5030029
Souto MRS, Pimenta AM, Catarino RIL, Leal MFC, Simões ETR. Heavy Metals in Milk and Dairy Products: Safety and Analysis. Pollutants. 2025; 5(3):29. https://doi.org/10.3390/pollutants5030029
Chicago/Turabian StyleSouto, Maria Renata S., Adriana M. Pimenta, Rita I. L. Catarino, Maria Fernanda C. Leal, and Eugénia T. R. Simões. 2025. "Heavy Metals in Milk and Dairy Products: Safety and Analysis" Pollutants 5, no. 3: 29. https://doi.org/10.3390/pollutants5030029
APA StyleSouto, M. R. S., Pimenta, A. M., Catarino, R. I. L., Leal, M. F. C., & Simões, E. T. R. (2025). Heavy Metals in Milk and Dairy Products: Safety and Analysis. Pollutants, 5(3), 29. https://doi.org/10.3390/pollutants5030029