Remediation of Cd, Cu, and Zn Metals in Soil Amended with Biochar and Animal Manure Using a Hyperaccumulator
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Experimental Design
2.2. Cultivation Practices
2.3. Heavy Metals and Micronutrients Analyses
2.4. Statistical Analysis
3. Results and Discussions
Heavy Metals | Permissible Limit in Potatoes, Mg kg−1 | Permissible Limit in Soil, Mg kg−1 |
---|---|---|
Cu | 10 [40] in plants | 100 |
Zn | 0.6 [40] in plants | 300 |
Ni | 0.1 [11] | 50 [41] |
Cr | 0.1 [11] | 0.2 [42] |
Mn | 2 [11] | 500 [43] |
Cd | 0.3 [11] | 3 [42] |
Pb | 1 [11] | 100 [42] |
K | - | - |
Mg | - | - |
3.1. BAF Values for Non-Essential Heavy Metals
3.2. BAF Values for Essential Heavy Metals
3.3. BAF Values for Essential Nutrients
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeliha, L.; Aksoy, A.; Akgul, G. Accumulation and effects of heavy metals on potatoes in Nevsehir, Turkey. Fresenius Environ. Bull. 2017, 26, 7083–7090. [Google Scholar]
- FAOSTAT Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023.
- Samman, S. Trace elements. In Essentials of Human Nutrition, 2nd ed.; Mann, I., Truswell, S., Eds.; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Shahzad, B.; Tanveera, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Nickel, S. Nickel whether toxic or essential for plants and environment—A review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Krämer, U. Metal hyperaccumulation in plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium, and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Farid, M.; Farooq, M.A.; Fatima, A.; Abubakar, M.; Ali, S.; Raza, N.; Alhaithloul, H.A.; Soliman, M.H. Copper-Induced Responses in Different Plant Species. In Approaches to the Remediation of Inorganic Pollutants; Hasanuzzaman, M., Ed.; Springer: Singapore, 2021; pp. 259–280. [Google Scholar] [CrossRef]
- Noulas, C.; Tziouvalekas, M.; Karyotis, T. Zinc in Soils, Water and Food Crops. J. Trace Elem. Med. Biol. 2018, 49, 252–260. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Codex General Standard for Contaminants and Toxins in Food and Feed (CXS 193-1995); Adopted 1995; Revised 1997, 2006, 2008, 2009; Amended 2009, 2010. Available online: https://www.fao.org/fileadmin/user_upload/agns/pdf/CXS_193e.pdf (accessed on 21 March 2025).
- Sidhu, G.P.S.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Effect of Lead on Oxidative Status, Antioxidative Response and Metal Accumulation in Coronopus didymus. Plant Physiol. Biochem. 2016, 105, 290–296. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Lead, Identification of Dangerous Levels of Lead, Final Rule. Fed. Regist. 2001, 66, 1206–1240. [Google Scholar]
- Sharma, P.; Dubey, R.S. Lead toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 35–52. [Google Scholar] [CrossRef]
- Yang, Y.; Hassan, M.F.; Ali, W.; Zou, H.; Liu, Z.; Ma, Y. Effects of cadmium pollution on human health: A narrative review. Atmosphere 2025, 16, 225. [Google Scholar] [CrossRef]
- Goss, M.J.; Tubeileh, A.; Goorahoo, D. A review of the use of organic amendments and the risk to human health. Adv. Agron. 2013, 120, 275–379. [Google Scholar] [CrossRef]
- Karaca, A.; Cetin, S.C.; Turgay, Q.C.; Kizilkaya, R. Effects of heavy metals on soil enzyme activities. In Soil Enzymology; Shukla, G., Varma, A., Eds.; Springer: Berlin, Germany, 2010. [Google Scholar] [CrossRef]
- Chen, L.; Guo, H.; Luo, S.; Xiao, X.; Xi, Q.; Wei, W.; He, Y. Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour. Technol. 2010, 101, 8599–8605. [Google Scholar] [CrossRef]
- Patel, A.K.; Singhania, R.R.; Pal, A.; Chen, C.W.; Pandey, A.; Dong, C.D. Advances on Tailored Biochar for Bioremediation of Antibiotics, Pesticides, and Polycyclic Aromatic Hydrocarbon Pollutants from Aqueous and Solid Phases. Sci. Total Environ. 2022, 838, 153054. [Google Scholar] [CrossRef] [PubMed]
- Majeed, A.; Muhammad, Z. An overview of the common bacterial diseases of potato in Pakistan, associated crop losses and control stratagems. J. Plant Pathol. 2020, 102, 3–10. [Google Scholar] [CrossRef]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef]
- Antonious, G.F.; Dawood, M.H.; Turley, E.T.; Paxton, R.B. Biochar and animal manures increased the yield of three varieties of turnips. Int. J. Appl. Agric. Sci. 2022, 8, 50–56. [Google Scholar] [CrossRef]
- Antonious, G.F.; Turley, E.T.; Gyawali, R.B.; Freeman, A.C. Influence of biochar and animal manures application on ammonia and nitrate concentrations in the root and shoot of three varieties of turnips. Agriculture 2023, 13, 137. [Google Scholar] [CrossRef]
- Chakrabarti, K.; Bhattacharyya, P.; Chakraborty, A. Effects of metal-contaminated organic wastes on microbial biomass and activities: A review. In Heavy Metal Contamination of Soil; Ahmed, I., Hayat, S., Pichtel, J., Eds.; Science Publishers, Inc.: Plymouth, UK, 2005; pp. 195–204. [Google Scholar]
- Qi, J.; Yang, H.; Wang, X.; Zhu, H.; Wang, Z.; Zhao, C.; Li, B.; Liu, Z. State-of-the-art on animal manure pollution control and resource utilization. J. Environ. Chem. Eng. 2023, 11, 110462. [Google Scholar] [CrossRef]
- Khan, A.; Malik, S.; Ali, N.; Bilal, M.; El-Shazly, M.; Iqbal, H.M. Biopolymer-based sorbents for emerging pollutants. In Sorbent Materials for Controlling Environmental Pollution; Elsevier: Amsterdam, The Netherlands, 2021; pp. 463–491. [Google Scholar] [CrossRef]
- Hejna, M.; Moscatelli, A.; Onelli, E.; Baldi, A.; Pilu, S.; Rossi, L. Evaluation of concentration of heavy metals in animal rearing systems. Ital. J. Anim. Sci. 2019, 18, 1372–1384. [Google Scholar] [CrossRef]
- Zeng, L.; Zhongren, N.; Chuanyang, Z. Potato absorption and phytoavailability of Cd, Ni, Cu, Zn, and Pb in sierozem soils amended with municipal sludge compost. J. Arid. Land. 2018, 10, 638–652. [Google Scholar] [CrossRef]
- Yin, J.; Hong, Z.S.; Gao, Y.F. Yielding characteristics of natural soft Lianyungang clay. J. Southeast Univ. Nat. Sci. Ed. 2009, 39, 1059–1064. [Google Scholar]
- Antonious, G.F. Distribution of seven heavy metals among hot pepper plant parts. J. Environ. Sci. Health Part B 2016, 51, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, R.; Pant, D.; Malviya, P. Engineered algal biochar for contaminant remediation and electrochemical applications. Sci. Total Environ. 2021, 774, 145676. [Google Scholar] [CrossRef]
- Brown, R.C. The role of pyrolysis and gasification in a carbon-negative economy. Processes 2021, 9, 882. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Low, C.Y. Use of biochar as a carbon-sequestering additive in cement mortar. Cem. Concr. Compos. 2018, 87, 110–129. [Google Scholar] [CrossRef]
- Shin, J.; Jang, E.; Park, S.; Ravindran, B.; Chang, S.W. Agro-environmental impacts, carbon sequestration, and profit analysis of blended biochar pellet application in the paddy soil-water system. J. Environ. Manag. 2019, 244, 92–98. [Google Scholar] [CrossRef]
- University of Kentucky Cooperative Extension Service. Vegetable Production Guide for Commercial Growers; University of Kentucky College of Agriculture, Food and Environment: Lexington, KY, USA; Available online: https://publications.ca.uky.edu/files/ID36.pdf (accessed on 10 January 2025).
- Antonious, G.F.; Snyder, J.C. Accumulation of heavy metals in plants and potential phytoremediation of lead by potato, Solanum tuberosum L. J. Environ. Sci. Health A 2007, 42, 811–816. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Method 6020a: Inductively Coupled Plasma-Mass Spectrometry; USEPA: Washington, DC, USA, 1998.
- Codex Alimentarius Commission, Joint FAO/WHO. Food Standards; Codex Alimentarius Commission: The Hague, The Netherlands, 2006; Available online: https://www.fao.org/4/a1100e/a1100e00.pdf (accessed on 15 January 2025).
- SAS Institute Inc. SAS/STAT Guide; Version 9.1.3; SAS Institute Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Antonious, G.F.; Silitonga, M.R.; Tsegaye, T.; Unrine, J.M.; Coolong, T.; Snyder, J.C. Elevated concentrations of trace-elements in soil do not necessarily reflect the metals available plants. J. Environ. Sci. Health Part B 2013, 48, 219–225. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Permissible Limits for Heavy Metals in Soil and Plants; WHO: Geneva, Switzerland, 1996; Available online: https://scirp.org/reference/referencespapers?referenceid=2696523 (accessed on 9 June 2025).
- Nepal, A.; Antonious, G.F.; Bebe, F.N.; Webster, T.C.; Gyawali, B.R.; Neupane, B. Heavy Metal Accumulation in Three Varieties of Mustard Grown under Five Soil Management Practices. Environments 2024, 11, 77. [Google Scholar] [CrossRef]
- Ediene, V.F.; Umoetok, S.B.A. Concentration of heavy metals in soils at the municipal dumpsite in Calabar metropolis. Asian J. Environ. Ecol. 2017, 3, 1–11. [Google Scholar] [CrossRef]
- Anjali, R.; Kumar, K. Manganese: Affecting our Environment (Water, Soil and Vegetables). Int. J. Innov. Res. Sci. Technol. 2018, 4, 1–7. [Google Scholar]
- Appenroth, K.J. Definition of “Heavy Metals” and Their Role in Biological Systems. In Soil Heavy Metals; Soil Biology, Vol. 19; Sherameti, I., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 9–14. [Google Scholar] [CrossRef]
- Reale, L.; Ferranti, F.; Mantilacci, S.; Corboli, M.; Aversa, S.; Landucci, F.; Baldisserotto, C.; Ferroni, L.; Pancaldi, S.; Venanzoni, R. Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium. Chemosphere 2016, 145, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Osu, C.I.; Onyema, M.O. Vanadium inhibition capacity on nutrients and heavy metal uptake by Cucumis sativus. J. Am. Sci. 2016, 12, 1–7. [Google Scholar]
- White, P.J.; Greenwood, D.J. Properties and management of cationic elements for crop growth. Soil Cond. Plant Growth 2013, 12, 160–194. [Google Scholar]
- Uchimiya, M.; Bannon, D.; Nakanishi, H.; McBride, M.B.; Williams, M.A.; Yoshihara, T. Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. J. Agric. Food Chem. 2020, 68, 12856–12869. [Google Scholar] [CrossRef]
- Orellana-Mendoza, E.; Camel, V.; Yallico, L.; Quispe-Coquil, V.; Cosme, R. Effect of Fertilization on the Accumulation and Health Risk for Heavy Metals in Native Andean Potatoes in the Highlands of Perú. Toxicol. Rep. 2024, 12, 594–606. [Google Scholar] [CrossRef]
- Wenzel, W.W. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 2009, 321, 385–408. [Google Scholar] [CrossRef]
- Riaz, U.; Aslam, A.; uz Zaman, Q.; Javeid, S.; Gul, R.; Iqbal, S.; Javid, S.; Murtaza, G.; Jamil, M. Cadmium contamination, bioavailability, uptake mechanism and remediation strategies in soil-plant-environment system: A critical review. Curr. Anal. Chem. 2021, 17, 49–60. [Google Scholar] [CrossRef]
- Nepal, A.; Antonious, G.F.; Gyawali, B.R.; Webster, T.C.; Bebe, F. Assessing the Bioaccumulation of Heavy Metals in Cabbage Grown under Five Soil Amendments. Pollutants 2024, 4, 58–71. [Google Scholar] [CrossRef]
(A) | ||||||
Soil Amendments | Lbs. Plot−1 | Lbs. Acre−1 | Kg Hectare−1 | |||
Sewage Sludge (SS) | 40.21 | 2000.00 | 2241.70 | |||
Chicken Manure (CM) | 182.82 | 9090.90 | 10,189.55 | |||
Cow Manure (Cow) | 402.21 | 20,000.00 | 22,417.02 | |||
10% Biochar | 279.36 | 13,888.88 | 15,567.36 | |||
5% Biochar | 139.68 | 6944.44 | 7783.68 | |||
Vermicompost (Vermi) | 201.11 | 10,000.00 | 11,208.51 | |||
10% Biochar SS | 40.21 + 279.36 | 2000.00 + 13,888.88 | 2241.70 + 15,567.36 | |||
10% Biochar CM | 182.82 + 279.36 | 9090.90 + 13,888.88 | 10,189.55 + 15,567.36 | |||
10% Biochar Cow | 402.21 + 279.36 | 20,000.00 + 13,888.88 | 22,417.02 + 15,567.36 | |||
20% Biochar | 279.36 + 279.36 | 13,888.88 + 13,888.88 | 15,567.36 + 15,567.36 | |||
10% Biochar Vermi | 201.11 + 279.36 | 10,000.00 + 13,888.88 | 11,208.51 + 15,567.36 | |||
(B) | ||||||
Soil Parameters | Sewage Sludge | Vermicompost | Cow Manure | Chicken Manure | Biochar | Native Soil (Control) |
P (%) | 0.30 b | 1.23 a | 0.72 ab | 0.79 ab | 0.30 b | 0.14 c |
N (%) | 0.47 b | 1.40 b | 1.75 b | 4.12 a | 0.56 c | 0.14 c |
K (%) | 0.24 b | 0.54 ab | 1.22 a | 0.50 ab | 0.33 b | 0.26 |
OM (%) | 3.20 b | 7.60 a | 5.63 a | 6.19 a | 7.60 a | 2.45 b |
C (%) | 3.6 c | 12.1 b | 26.1 a | 17.7 b | 3.7 c | 1.5 c |
C/N ratio | 7.6 c | 8.64 bc | 14.91 a | 4.29 c | 17.61 a | 10.71 b |
pH | 8.4 a | 5.71 a | 7.95 a | 6.15 a | 6.8 a | 6.8 a |
P, ppm | 10.54 a | 0.23 c | 0.30 c | 2.56 b | 1.16 bc | 18.59 a |
Cd, ppm | 6.63 a | 6.65 a | 6.73 a | 6.82 a | 6.75 a | 0.66 b |
Ni, ppm | 9.22 a | 0.34 c | 4.06 b | 6.27 b | 5.12 b | 6.83 b |
Mn, ppm | 497.86 b | 213.46 c | 308.62 b | 201.2 c | 327.98 b | 1262.5 a |
Cr, ppm | 19.43 a | 2.49 b | 3.31 b | 5.06 b | 3.2 b | 14.15 a |
Mg, ppm | 2045.25 b | 1564.7 c | 2400.28 b | 6705.89 a | 2198.37 b | 847.71 d |
Cu, ppm | 182.29 a | 1.05 d | 18.647 c | 37.793 b | 9.08 c | 8.58 c |
K, ppm | 928.75 d | 506.2 d | 8279.41 b | 17741.03 a | 2251.29 c | 292.55 d |
Zn, ppm | 441.85 a | 122.1 ab | 58.73 b | 225.09 ab | 28.33 bc | 19.72 c |
Soil Treatment | Pb | Cd | Ni | Mn | Cr |
---|---|---|---|---|---|
10% Biochar | 19.448 ± 0.81 ab | 0.688 ± 0.01 a | 7.128 ± 0.229 a | 1334.8 ± 59.57 a | 15 ± 0.572 ab |
20% Biochar | 20.391 ± 0.96 ab | 0.70233 ± 0.03 a | 6.68 ± 0.19 abc | 1424 ± 88.09 a | 15.247 ± 1.587 ab |
5% Biochar | 19.347 ± 1.76 ab | 0.7 ± 0.03 a | 5.994 ± 0.38 c | 1241.2 ± 156.09 a | 15.194 ± 1.655 ab |
10% Biochar Cow | 19.704 ± 0.51 ab | 0.703 ± 0.01 a | 5.918 ± 0.17 c | 1307.2 ± 37.79 a | 14.845 ± 0.537 ab |
10% Biochar CM | 20.771 ± 0.93ab | 0.71367 ± 0.01 a | 6.095 ± 0.38 bc | 1363.4 ± 88.11 a | 16.427 ± 0.788 a |
10% Biochar SS | 21.176 ± 0.54 a | 0.713 ± 0.00 a | 6.501 ± 0.23 abc | 1459.4 ± 57.65 a | 15.667 ± 0.452 ab |
10% Biochar Vermi | 19.489 ± 2.06 ab | 0.67667 ± 0.03 a | 5.963 ± 0.22 c | 1319.5 ± 201.97 a | 14.84 ± 1.812 ab |
CM | 19.341 ± 0.37 ab | 0.67467 ± 0.01 a | 6.707 ± 0.14 abc | 1293.8 ± 70.23 a | 15.192 ± 0.782 ab |
Cow | 20.21 ± 0.93 ab | 0.703 ± 0.01 a | 7.133 ± 0.14 a | 1326.6 ± 42 a | 15.715 ± 0.221 ab |
NA (control) | 18.593 ± 0.59 ab | 0.66733 ± 0.01 a | 6.836 ± 0.14 ab | 1262.5 ± 38.44 a | 14.155 ± 0.563 ab |
SS | 17.82 ± 1.19 ab | 0.65433 ± 0.01 a | 6.232 ± 0.18 bc | 1169.6 ± 104.44 a | 13.598 ± 0.68 ab |
Vermi | 17.48 ± 0.10 b | 0.65 ± 0.02 a | 6.8423 ± 0.25 ab | 1190.2 ± 46.08 a | 13.088 ± 0.21 b |
Soil Treatment | Mg | Cu | K | Zn | |
10% Biochar | 856.85± abc | 9.111 ± 0.52 ab | 317.38 ± 9.81 a | 19.14 ± 0.76 a | |
20% Biochar | 864.5 ± 39.17 a | 8.906 ± 0.15 ab | 302.9 ± 42.80 a | 20.701 ± 2.38 a | |
5% Biochar | 725.47 ± 56.19 de | 7.738 ± 0.57 b | 205.13 ± 37.39 cd | 17.36 ± 1.12 a | |
10% Biochar Cow | 708.93 ± 20.48 e | 9.09 ± 0.66 ab | 220.63 ± 1.66 bcd | 20.392 ± 0.87 a | |
10% Biochar CM | 732.53 ± 37.49 bcde | 8.311 ± 0.57 ab | 276.11 ± 21.15 abc | 19.745 ± 2.02 a | |
10% Biochar SS | 788.83 ± 37.78 abcde | 9.824 ± 1.01 ab | 260 ± 14.18 abcd | 21.176 ± 2.22 a | |
10% Biochar Vermi | 730.98 ± 48.89 cde | 10.1 ± 1.52 ab | 200.74 ± 25.42 d | 21.544 ± 3.12 a | |
CM | 791.37 ± 26.56 abcde | 11.419 ± 2.96 a | 324.88 ± 19.18 a | 23.348 ± 6.42 a | |
Cow | 859.99 ± 40.12 ab | 8.233 ± 0.36 ab | 307.17 ± 12.94 a | 19.194 ± 1.65 a | |
NA (control) | 847.71 ± 40.36 abcd | 8.579 ± 0.257 ab | 292.55 ± 15.48 ab | 19.723 ± 0.893 a | |
SS | 706.87 ± 34.05 e | 8.698 ± 0.955 ab | 275.86 ± 25.01 abc | 18.431 ± 2.054 a | |
Vermi | 787.28 ± 24.68 abcde | 7.811 ± 0.369 b | 250.72 ± 13.08 abcd | 17.52 ± 1.533 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonious, G.F.; Nepal, A.; Neupane, B. Remediation of Cd, Cu, and Zn Metals in Soil Amended with Biochar and Animal Manure Using a Hyperaccumulator. Pollutants 2025, 5, 22. https://doi.org/10.3390/pollutants5030022
Antonious GF, Nepal A, Neupane B. Remediation of Cd, Cu, and Zn Metals in Soil Amended with Biochar and Animal Manure Using a Hyperaccumulator. Pollutants. 2025; 5(3):22. https://doi.org/10.3390/pollutants5030022
Chicago/Turabian StyleAntonious, George F., Anjan Nepal, and Basanta Neupane. 2025. "Remediation of Cd, Cu, and Zn Metals in Soil Amended with Biochar and Animal Manure Using a Hyperaccumulator" Pollutants 5, no. 3: 22. https://doi.org/10.3390/pollutants5030022
APA StyleAntonious, G. F., Nepal, A., & Neupane, B. (2025). Remediation of Cd, Cu, and Zn Metals in Soil Amended with Biochar and Animal Manure Using a Hyperaccumulator. Pollutants, 5(3), 22. https://doi.org/10.3390/pollutants5030022