Previous Issue
Volume 6, June
 
 

Ecologies, Volume 6, Issue 3 (September 2025) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 3917 KiB  
Article
Fragmented Habitats, Fragmented Functions: Unveiling the Role of Habitat Structure in Andean Bird Communities
by Valentina Ramos-Mosquera, Edwin López-Delgado and Miguel Moreno-Palacios
Ecologies 2025, 6(3), 52; https://doi.org/10.3390/ecologies6030052 - 11 Jul 2025
Viewed by 204
Abstract
Understanding the processes that shape biodiversity patterns is an important challenge in ecology. Land-use change is often recognized as a pivotal factor influencing biodiversity at large scales, with habitat heterogeneity being one of the most critical drivers of community composition and diversity. In [...] Read more.
Understanding the processes that shape biodiversity patterns is an important challenge in ecology. Land-use change is often recognized as a pivotal factor influencing biodiversity at large scales, with habitat heterogeneity being one of the most critical drivers of community composition and diversity. In this study, we evaluate the influence of landscape structure on the functional diversity of bird assemblages in the Upper Magdalena River Valley, Colombia. We used Generalized Linear Models to assess the effects of landscape structure on functional diversity, incorporating landscape metrics such as the number of patches, patch area and shape, and Shannon’s diversity and evenness indices. Additionally, we analyzed the influence of landscape structure on functional beta diversity—including its components of functional turnover and nestedness—using a distance-based redundancy analysis. We also examined the relationship between species traits and landscape metrics through a RLQ and fourth-corner analysis. We found a negative effect of habitat loss and fragmentation on functional diversity. Our results show that bird assemblages exhibit higher diversity in non-fragmented landscapes (>75% forest area; <1% urban cover), retaining greater functional richness and functional evenness (FRic > 0.24; FEve > 0.60). Moreover, non-fragmented landscapes seem to support a higher number of nectarivores and forest specialist species. In contrast, bird functional richness decreased with landscape fragmentation (FRic < 0.07). These findings highlight the importance of forest conservation for maintaining species persistence, ecological processes, and ecosystem services provided by birds. Full article
Show Figures

Figure 1

15 pages, 3137 KiB  
Article
Activity Patterns and Predator–Prey Interactions of Mammals in the Cloud Forest of Tamaulipas, Mexico
by Nayeli Martínez-González, Leroy Soria-Díaz, Claudia C. Astudillo-Sánchez, Carlos Barriga-Vallejo, Gabriela R. Mendoza-Gutiérrez, Zavdiel A. Manuel-de la Rosa and Venancio Vanoye-Eligio
Ecologies 2025, 6(3), 51; https://doi.org/10.3390/ecologies6030051 - 7 Jul 2025
Viewed by 287
Abstract
The analysis of activity patterns is a valuable tool for understanding the temporal organization of mammal communities, which is determined by biological requirements, resource availability, and competitive pressures both within and between species. Research on this ecological aspect can contribute to the development [...] Read more.
The analysis of activity patterns is a valuable tool for understanding the temporal organization of mammal communities, which is determined by biological requirements, resource availability, and competitive pressures both within and between species. Research on this ecological aspect can contribute to the development of effective conservation strategies. Cloud forest is an ecosystem of high biological relevance, as this provides habitat for a wide diversity of species in Mexico, including endemic, emblematic, and threatened taxa. Our main objectives were to analyze mammalian activity patterns and predator–prey relationships in the cloud forest of the El Cielo Biosphere Reserve, Tamaulipas, Mexico. From 2018 to 2020, twenty camera trap stations were installed, and independent photographic records were obtained, divided into 24 one-hour intervals, and subsequently classified as diurnal, nocturnal, crepuscular, or cathemeral. Temporal activity was estimated using circular statistics in RStudio v4.3.1, and activity overlap between major carnivores and their prey was assessed using the ‘overlap’ package in R. A total of 18 medium- and large-sized mammal species were recorded in this study. The activity of four species was seasonally influenced, with a predominantly nocturnal pattern observed during the dry season. The activity overlap analysis revealed potential temporal similarity between predators and their prey. For example, Panthera onca exhibited a high overlap with Mazama temama (Δ = 0.83), Puma concolor with Nasua narica (Δ = 0.91), and Ursus americanus with M. temama (Δ = 0.77). These findings suggest that the activity patterns of certain species can be influenced by seasonality and that large predators may favor specific prey whose activity overlaps with their own. Full article
Show Figures

Figure 1

22 pages, 2534 KiB  
Article
Gliding to Decline? Understanding the Population Status of the Nocturnal Gliding Mammal in Anda, Bohol, the Philippines, Using Local Ecological Knowledge
by Filip J. Wojciechowski, S. S. Del Mar, M. K. Fariolen, M. Hidalgo, A. A. Sabellana, K. M. Dumadag, F. T. Wagas and J. B. Otadoy
Ecologies 2025, 6(3), 50; https://doi.org/10.3390/ecologies6030050 - 2 Jul 2025
Viewed by 851
Abstract
Global biodiversity losses continue despite intensive conservation efforts. Many mammal species are understudied due to their specialized ecological niches. One such species is the Philippine colugo (Cynocephalus volans), a nocturnal endemic species in the Philippines. In this study, we utilized Local [...] Read more.
Global biodiversity losses continue despite intensive conservation efforts. Many mammal species are understudied due to their specialized ecological niches. One such species is the Philippine colugo (Cynocephalus volans), a nocturnal endemic species in the Philippines. In this study, we utilized Local Ecological Knowledge (LEK) to obtain baseline information on species knowledge, attitudes, population status, and threats. Between June and September 2023, we interviewed 471 residents across all villages in Anda, Bohol. The majority of local people recognized the species and had witnessed it in Anda, occasionally near households. Residents have limited knowledge of colugo diet and distribution, which they get primarily through word-of-mouth and personal experience. The species is perceived as neutral, but the willingness to conserve it is high. Although the Philippine colugo population seems to be present in several villages in Anda, one-fourth of the respondents believe it is declining. We identified hunting for consumption as the main threat to the colugo population in Anda, which, together with other threats, may corroborate this result. We recommend actively involving male farmers in colugo population monitoring and behavioral observations, as well as investigating the drivers and importance of colugo meat consumption among residents to design a proper conservation strategy. Full article
Show Figures

Figure 1

19 pages, 2232 KiB  
Article
The Diversity Indices of Culturable Bacteria from the Rhizosphere of Pennisetum clandestinum and Pseudelephantopus spicatus in Urban Soil
by Jorge L. Gallego, Ana M. Agudelo, Clara M. Morales, Andrea Tamayo-Londoño, Juliana Soler-Arango, Irina P. Tirado-Ballestas and Alejandro Arango-Correa
Ecologies 2025, 6(3), 49; https://doi.org/10.3390/ecologies6030049 - 1 Jul 2025
Viewed by 404
Abstract
Urban soils are subject to intense anthropogenic disturbance, often resulting in biodiversity loss and reduced ecosystem functionality. However, rhizospheric microbial communities help maintain critical soil-ecosystem services, supporting urban soil resilience. This study evaluated the diversity of culturable bacteria associated with the rhizospheres of [...] Read more.
Urban soils are subject to intense anthropogenic disturbance, often resulting in biodiversity loss and reduced ecosystem functionality. However, rhizospheric microbial communities help maintain critical soil-ecosystem services, supporting urban soil resilience. This study evaluated the diversity of culturable bacteria associated with the rhizospheres of Pennisetum clandestinum and Pseudelephantopus spicatus in green areas of Medellín, Colombia, under contrasting levels of anthropic pressures. Rhizospheric and non-rhizospheric soils were sampled near automotive mechanic sites, and bacterial communities were assessed through plate counting and morphological characterization. Alpha, beta, and rarefaction diversity indices were applied to evaluate culturable morphotypes. P. clandestinum supported a more diverse and complex rhizospheric microbiome, particularly in non-exposed soils, while P. spicatus hosted less diverse communities under similar conditions. Diversity indices effectively distinguished microbial patterns, demonstrating the utility of culture-based methods for microbial community assessment. As a first step in microbial bioprospecting workflows, these methods allow for the rapid screening of culturable diversity and support decision-making for the selection of promising environments, plant species, and microbial isolates. This approach can inform urban soil threats, the promotion of beneficial plant–microbe interactions, and the identification of bioindicator species for soil health monitoring in a framework for the management of green areas. Full article
Show Figures

Figure 1

10 pages, 1069 KiB  
Article
Does Buffelgrass Have a Long Permanence in an Established Pasture? An Analysis of the Population Dynamics of This Exotic Grass in Central Sonora, Mexico
by Daniel Morales-Romero, Rosa María Angulo-Cota, Carmen Isela Ortega-Rosas, Octavio Cota-Arriola and Francisco Molina-Freaner
Ecologies 2025, 6(3), 48; https://doi.org/10.3390/ecologies6030048 - 1 Jul 2025
Viewed by 179
Abstract
The introduction of exotic forage species to new environments for livestock purposes is a common practice to increase productivity. Unfortunately, the population dynamics of introduced species as well as that of native species that persist in grasslands has been poorly studied. In Sonora, [...] Read more.
The introduction of exotic forage species to new environments for livestock purposes is a common practice to increase productivity. Unfortunately, the population dynamics of introduced species as well as that of native species that persist in grasslands has been poorly studied. In Sonora, the introduction of exotic buffelgrass pasture has caused substantial modifications in the structure of desert scrublands. In this study, an evaluation of the population dynamics of buffelgrass pasture in two grasslands with different times (10 and 50 years) was carried out using classification by size category according to the total number of stems per plant. For each size category of stems, the probabilities of permanence, transition, and regression, and for estimating seed establishment and fecundity were evaluated. The results obtained indicate that in both grasslands, the population growth values (λ) were slightly greater than 1 (λ > 1), which indicates that the populations are stable. The results of this study suggest that the permanence of individual buffelgrass plants in established grasslands is the determining factor in λ. Likewise, our results suggest that in both grasslands, pasture management plays an important role in the permanence or deterioration of buffelgrass pastures. Full article
Show Figures

Figure 1

22 pages, 2625 KiB  
Article
Leaf Litter Mixtures in Guam: Decomposition Synergism and Antagonism of Two Endangered Tree Species
by Thomas E. Marler
Ecologies 2025, 6(3), 47; https://doi.org/10.3390/ecologies6030047 - 1 Jul 2025
Viewed by 207
Abstract
Leaf litter traits among tree species exert a direct influence on spatiotemporal nutrient turnover and an indirect influence by shifting the decomposition dynamics of leaf litter mixtures including other sympatric species. Cycas micronesica and Serianthes nelsonii are two Mariana Island tree species that [...] Read more.
Leaf litter traits among tree species exert a direct influence on spatiotemporal nutrient turnover and an indirect influence by shifting the decomposition dynamics of leaf litter mixtures including other sympatric species. Cycas micronesica and Serianthes nelsonii are two Mariana Island tree species that are endangered, and developing a greater understanding of the influence of these trees on biogeochemistry may improve information-based conservation decisions. The objectives of this study were to quantify the influence of mixing the leaf litter of these species with 12 sympatric forest plants to determine the additive and nonadditive influences on decomposition. The C. micronesica litter was collectively antagonistic when litter mixtures were incubated in a mesocosm study and a field litterbag study, and the response was similar among the included species. The S. nelsonii litter was collectively synergistic among the same mixed species, and the response was dissimilar among the included species. The contributions of these two threatened tree species to spatiotemporal diversity in biogeochemistry are dissimilar and considerable. These findings indicate that species recovery efforts for these two species are of paramount importance for maintaining Mariana Island ecological integrity and native biodiversity by sustaining their contributions to ecosystem services. Full article
Show Figures

Figure 1

14 pages, 6253 KiB  
Article
Does Forest Structure Influence the Abundance of Predators and Habitat Competitors of the Endangered Pyrenean Capercaillie?
by Adrián Moreno, Inmaculada Navarro, Rubén Chamizo, Carlos Martínez-Carrasco and Carlos Sánchez-García
Ecologies 2025, 6(3), 46; https://doi.org/10.3390/ecologies6030046 - 1 Jul 2025
Viewed by 293
Abstract
The Pyrenean capercaillie (Tetrao urogallus aquitanicus) is a forest obligate grouse that has experienced a marked population decline in recent decades owing to the lack of optimal habitats. However, the effect of forest structure on potential predators and habitat competitors has [...] Read more.
The Pyrenean capercaillie (Tetrao urogallus aquitanicus) is a forest obligate grouse that has experienced a marked population decline in recent decades owing to the lack of optimal habitats. However, the effect of forest structure on potential predators and habitat competitors has not been well-studied. We conducted a camera-trapping study at three conservation areas in Huesca province (northeastern Spain), which were classified as ‘optimal’, ‘favorable’, and ‘unfavorable’ based on habitat suitability for the capercaillie. This study was conducted for 3417 days at a total of 130 camera locations in autumn–winter and spring–summer, capturing 8757 valid photos. In total, 36 different species were recorded. The most frequently detected species were Southern chamois (Rupicapra pyrenaica pyrenaica; 32.6%), roe deer (Capreolus capreolus; 18%), wild boar (Sus scrofa; 9.6%), red squirrel (Sciurus vulgaris; 6.1%), mustelids (5.6%), and red fox (Vulpes vulpes; 4.8%). Capercaillies were photographed in the optimal and favorable habitat areas. Nest predators, such as mustelids and red fox, were more frequently detected in the favorable area during autumn–winter and in the optimal area in spring–summer, while corvids were more frequently detected in the unfavorable habitat area during both periods. No clear pattern was found for wild boar (nest predator and habitat competitor) or cervids (competitors). As capercaillie coexist with a wide range of predators and competitors, and habitat structure may not always explain species relative abundance, factors such as disturbance and food resources should be also taken into account when aiming to develop targeted management for the benefit of the capercaillie. Full article
(This article belongs to the Special Issue Feature Papers of Ecologies 2024)
Show Figures

Figure 1

14 pages, 1317 KiB  
Article
Role of Agricultural Management in Short-Term Monitoring of Arthropod Diversity at Field Scale
by Simone Bergonzoli, Luca Cozzolino, Elio Romano and Luigi Pari
Ecologies 2025, 6(3), 45; https://doi.org/10.3390/ecologies6030045 - 23 Jun 2025
Viewed by 267
Abstract
In recent decades, a significant decline in arthropods’ abundance and biodiversity, as a consequence of intensive agricultural practices and reductions in their natural environments, has been observed. While landscape-scale biodiversity studies are well documented in the literature, the impact of field-level agricultural management [...] Read more.
In recent decades, a significant decline in arthropods’ abundance and biodiversity, as a consequence of intensive agricultural practices and reductions in their natural environments, has been observed. While landscape-scale biodiversity studies are well documented in the literature, the impact of field-level agricultural management remains less understood. To address this gap, a sampling of diversity was carried out through Malaise traps on five agricultural surfaces with different management schemes: two characterized by the presence of trees (Populus L. spp. and Eucalyptus spp.), two herbaceous fields in different development stages (flowering Carthamus tinctorius L. and stubble of Triticum aestivum), and one mixed system (an agroforestry plantation composed of Populus L. spp. and Carthamus tinctorius L.). Data collection focused on evaluating the total animal biomass (weight and number) and the richness and evenness components of diversity using Shannon and Simpson indices at the Order level. The sampled arthropods belonged to six Orders of Insecta and one Order of Arachnida. The agroforestry system had a higher total animal biomass, in terms of weight, than the other treatments (61.24% higher than in the eucalyptus system, 58.91% higher than in the wheat stubble, 42.63% higher than in the flowering safflower system, and 11.63% higher than in the poplar plantation), with the number of total arthropods following a similar trend. The results demonstrated that the biomass, richness, and evenness of the collected arthropods varied according to the management practices applied, and higher values were recorded in the agroforestry system. Although preliminary, the findings suggest the suitability of mixed systems for sustaining higher diversity than traditional monoculture management schemes. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop