Potential of Phytophthora Species to Exist in Marine Habitats
Abstract
1. Introduction
2. Materials and Methods
2.1. Phytophthora Isolates
2.2. In Vitro Tests for Salt Tolerance of Phytophthora Species
2.3. Morphology of Phytophthora Species at Salinity Stress
3. Results
3.1. Effect of Salinity on Radial Mycelial Growth of Phytophthora Species
3.2. Effect of High Salinity on Colony Type, Growth, Formation of Morphological Structures, and Development of Sporangia by Phytophthora Species
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marano, A.V.; Jesu, A.L.; Pires-Zottar, C.L.A. Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 78, 194. [Google Scholar] [CrossRef]
- Pires-Zottar, C.L.A.; Jesus, A.L.; Marano, A.V. Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 78, 196. [Google Scholar] [CrossRef]
- Bennett, R.M.; Thines, M. Confirmation that Phytophthora insolita (Peronosporaceae) is present as a marine saprotroph on mangrove leaves and first report of the species for the Philippines. Nova Hedwig. 2017, 105, 185–196. [Google Scholar] [CrossRef]
- Bennett, R.M.; Thines, M. An overview on Philippine estuarine oomycetes. Philipp. J. Syst. Biol. 2020, 14, 1–14. [Google Scholar]
- Govers, L.L.; Man in‘t Veld, W.A.; Meffert, J.P.; Bouma, T.J.; van Rijswick, P.C.J.; Heusinkveld, J.H.T.; Orth, R.J.; van Katwijk, M.M.; van der Heide, T. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160812. [Google Scholar] [CrossRef] [PubMed]
- Man in’t Veld, W.A.; Rosendahl, K.; van Rijswick, P.C.J.; Meffert, J.P.; Boer, E.; Westenberg, M.; van der Heide, T.; Govers, L.L. Multiple Halophytophthora spp. and Phytophthora spp. including P. gemini, P. inundata, and P. chesapeakensis sp. nov. isolated from the seagrass Zostera marina in the Northern Hemisphere. Eur. J. Phytopathol. 2019, 153, 341–357. [Google Scholar] [CrossRef]
- Menning, D.M.; Ward, D.H.; Wyllie-Echeverria, S.; Sage, G.K.; Gravley, M.C.; Gravley, H.A.; Talbot, S.L. Are migratory waterfowl vectors of seagrass pathogens? Ecol. Evol. 2020, 10, 2062–2073. [Google Scholar] [CrossRef]
- Menning, D.M.; Gravley, H.A.; Cady, M.N.; Pepin, D.; Wyllie-Echeverria, S.; Ward, D.H.; Talbot, S.L. eDNA metabarcoding shows wide distribution of eelgrass pathogens in the Pacific. Metabarcoding Metagenom. 2021, 5, 35–42. [Google Scholar] [CrossRef]
- Blaker, N.S.; MacDonald, J.D. The effect of soil salinity on formation of sporangia and zoospores by three isolates of Phytophthora. Phytopathology 1985, 75, 270–274. [Google Scholar] [CrossRef]
- Swiecki, T.J.; MacDonald, J.D. Soil salinity enhances Phytophthora Root Rot of tomato but hinders asexual reproduction by Phytophthora parasitica. J. Amer. Soc. Hort. Sci. 1991, 116, 471–477. [Google Scholar] [CrossRef]
- Wilkens, S.; Field, C.D. Effect of varying sea-water salinity on growth kinetics of Phytophthora polymorphica. Mycol. Res. 1993, 97, 1135–1139. [Google Scholar] [CrossRef]
- Preuett, J.; Collins, D.; Luster, D.; Widmer, T. The effects of salinity on the survival, growth, sporulation and infection of Phytophthora ramorum. Fungal Ecol. 2016, 23, 123–130. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Bellas-Manley, A.; Willis, J.K.; Fournier, S.; Vinogradova, N.; Nerem, R.S.; Piecuch, C.G.; Thompson, P.R.; Kopp, R. The rate of global sea level rise doubled during the past three decades. Commun. Earth Environ. 2024, 5, 601. [Google Scholar] [CrossRef]
- Oh, E.; Gryzenhout, M.; Wingfield, B.D.; Wingfield, M.J.; Burgess, T.I. Surveys of soil and water reveal a goldmine of Phytophthora diversity in South African natural ecosystems. IMA Fungus 2013, 4, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Redondo, M.A.; Boberg, J.; Stenlid, J.; Oliva, J. Contrasting distribution patterns between aquatic and terrestrial Phytophthora species along a climatic gradient are linked to functional traits. ISME J. 2018, 12, 2967–2980. [Google Scholar] [CrossRef] [PubMed]
- Brasier, C.; Scanu, B.; Cooke, D.; Jung, T. Phytophthora: An ancient, historic, biologically and structurally cohesive and evolutionarily successful generic concept in need of preservation. IMA Fungus 2022, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Christova, P.K.; Lyubenova, A.B.; Kostov, K.V.; Slavov, S.B. First report of Phytophthora pseudosyringae recovered from aquatic ecosystems in Bulgaria. For. Pathol. 2019, 49, e12505. [Google Scholar] [CrossRef]
- Christova, P.K. Detection of Phytophthora gallica in Bulgaria and co-existence with other Phytophthora species in a small river. J. Plant Dis. Prot. 2022, 129, 1377–1387. [Google Scholar] [CrossRef]
- Christova, P.K. Phytophthora polonica and Phytophthora hydropathica from clade 9 associated with alder decline in Bulgaria. Life 2024, 14, 720. [Google Scholar] [CrossRef]
- Christova, P.K. Fishing for estuarine oomycetes. Diversity 2024, 16, 530. [Google Scholar] [CrossRef]
- Poulos, S.E. Water Masses of the Mediterranean Sea and Black Sea: An Overview. Water 2023, 15, 3194. [Google Scholar] [CrossRef]
- Jung, T.; Stukely, M.J.C.; Hardy, G.E.S.J.; White, D.; Paap, T.; Dunstan., W.A.; Burgess, T.I. Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: Evolutionary and ecological implications. Persoonia 2011, 26, 13–39. [Google Scholar] [CrossRef]
- Marano, A.V.; Jesus, A.L.; de Souza, J.I.; Jerônimo, G.H.; Gonçalves, D.R.; Boro, M.C.; Rocha, S.C.O.; Pires-Zottarelli, C.L.A. Ecological roles of saprotrophic Peronosporales (Oomycetes, Straminipila) in natural environments. Fungal Ecol. 2016, 19, 77–88. [Google Scholar] [CrossRef]
- Maia, C.; Horta Jung, M.; Carella, G.; Milenković, I.; Janoušek, J.; Tomšovský, M.; Mosca, S.; Schena, L.; Cravador, A.; Moricca, S.; et al. Eight new Halophytophthora species from marine and brackish-water ecosystems in Portugal and an updated phylogeny for the genus. Persoonia 2022, 48, 54–90. [Google Scholar] [CrossRef] [PubMed]
- Nechwatal, J.; Bakonyi, J.; Cacciola, S.O.; Cooke, D.E.L.; Jung, T.; Nagy, Z.A.; Vannini, A.; Vettraino, A.M.; Brasier, C.M. The morphology, behavior and molecular phylogeny of Phytophthora taxon Salixsoil and its redesignation as Phytophthora lacustris sp. nov. Plant Pathol. 2013, 62, 355–369. [Google Scholar] [CrossRef]
- Abad, Z.; Burgess, T.; Bourret, T.; Bensch, K.; Cacciola, S.; Scanu, B.; Mathew, R.; Kasiborski, B.; Srivastava, S.; Kageyama, K.; et al. Phytophthora: Taxonomic and phylogenetic revision of the genus. Stud. Mycol. 2023, 106, 259–348. [Google Scholar] [CrossRef]
- Schoebel, C.N.; Prospero, S.; ·Rigling, D.; Rufner, B. Fishing for Phytophthora in watercourses of the highly urbanized Swiss Plateau. Mycol. Prog. 2024, 23, 17. [Google Scholar] [CrossRef]
- Wickland, A.C.; Jensen, C.E.; Rizzo, D.M. Geographic distribution, disease symptoms and pathogenicity of Phytophthora nemorosa and Phytophthora pseudosyringae in California, USA. For. Pathol. 2008, 38, 288–298. [Google Scholar] [CrossRef]
- Mullett, M.S.; Harris, A.R.; Scanu, B.; Van Poucke, K.; LeBoldus, J.; Stamm, E.; Bourret, T.B.; Christova, P.K.; Oliva, J.; Redondo, M.A.; et al. Phylogeography, origin and population structure of the selffertile emerging plant pathogen Phytophthora pseudosyringae. Mol. Plant Pathol. 2024, 25, e13450. [Google Scholar] [CrossRef]
- Bregant, C.; Rossetto, G.; Meli, L.; Sasso, N.; Montecchio, L.; Brglez, A.; Piškur, B.; Ogris, N.; Maddau, L.; Linaldeddu, B.T. Diversity of Phytophthora Species Involved in New Diseases of Mountain Vegetation in Europe with the Description of Phytophthora pseudogregata sp. nov. Forests 2023, 14, 1515. [Google Scholar] [CrossRef]
- Matsiakh, I.; Kramarets, V.; Cleary, M. Occurrence and diversity of Phytophthora species in declining broadleaf forests in western Ukraine. For. Pathol. 2021, 51, e12662. [Google Scholar] [CrossRef]
- Bregant, C.; Batista, E.; Hilário, S.; Linaldeddu, B.T.; Alves, A. Phytophthora Species Involved in Alnus glutinosa Decline in Portugal. Pathogens 2023, 12, 276. [Google Scholar] [CrossRef]
Phytophthora Species, Clade | Control | NaCl | Black Sea Water | Aegean Sea Water | |||
---|---|---|---|---|---|---|---|
4.5‰ | 9‰ | 18‰ | 36‰ | ||||
P. citricola, clade 2 | 100 | 86 | 83 | 69 | 35 | 73 | 52 |
P. plurivora, clade 2 | 100 | 93 | 81 | 61 | 5 | 71 | 34 |
P. pseudosyringae, clade 3 | 100 | 99 | 104 | 67 | 26 | 116 | 95 |
P. inundata, clade 6 | 100 | 104 | 106 | 107 | 104 | 105 | 105 |
P. chlamydospora, clade 6 | 100 | 83 | 84 | 71 | 33 | 82 | 78 |
P. gonapodyides, clade 6 | 100 | 104 | 105 | 79 | 43 | 89 | 64 |
P. bilorbang, clade 6 | 100 | 102 | 110 | 78 | 48 | 93 | 65 |
P. lacustris-1, clade 6 | 100 | 108 | 123 | 112 | 65 | 100 | 87 |
P. lacustris-2, clade 6 | 100 | 105 | 110 | 91 | 52 | 80 | 81 |
P. pseudocryptogea, clade 8 | 100 | 98 | 97 | 76 | 34 | 86 | 67 |
P. syringae, clade 8 | 100 | 74 | 63 | 52 | 24 | 82 | 68 |
P. polonica, clade 9 | 100 | 118 | 103 | 110 | 15 | 139 | 54 |
P. honggalleglyana-1, clade 9 | 100 | 90 | 86 | 84 | 36 | 86 | 46 |
P. honggalleglyana-2, clade 9 | 100 | 71 | 93 | 78 | 25 | 85 | 41 |
P. honggalleglyana-3, clade 9 | 100 | 79 | 92 | 84 | 47 | 69 | 18 |
P. gallica, clade 10 | 100 | 77 | 77 | 40 | 0 | 65 | 34 |
Phytophthora Species | Morphological Characterization * | ||||
---|---|---|---|---|---|
Control | 18‰ NaCl | 36‰ NaCl | Black Sea Water | Aegean Sea Water | |
P. citricola | CHC | CHC | CHC; CC | CHC | CHC to STC |
OOG on CA | OOG on CA | NS on CA | OOG on CA | NS on CA | |
SPO on V8A; RS | SPO on V8A; RS | sSPO on V8A | no SPO on V8A | no SPO on V8A | |
P. plurivora | STC | STC | SFC; hl RG | STC | STC to CHC |
OOG on CA | NS on CA | NS on CA | OOG on CA | NS on CA | |
SPO on V8A; RS | SPO on V8A; RS | SPO on V8A; RS | SPO on V8A | SPO on V8A | |
P. pseudosyringae | CHC | CHC | CHC; hl CC; sl RG | CHC | CHC |
OOG on CA | NS on CA | NS on CA | NS on CA | NS on CA | |
SPO on V8A; ZGP | SPO on V8A; ZGP | sSPO on V8A | sSPO on V8A | sSPO on V8A | |
P. inundata | PEC | PEC | PEC; sl RG | PEC | PEC |
HS on CA | NS on CA | NS on CA | NS on CA | NS on CA | |
no SPO on V8A | sSPO on V8A | sSPO on V8A | no SPO on V8A | no SPO on V8A | |
P. chlamydospora | PEC | PEC | PEC; CC | PEC | PEC to CHC |
CH and HS on CA | cHS on CA | cHS on CA | NS on CA | NS on CA | |
sSPO on V8A | sSPO on V8A | sSPO on V8A | sSPO on V8A | no SPO on V8A | |
P. gonapodyides | ROC | ROC | ROC; sl RG | ROC | ROC to CHC |
HS on CA | HS on CA | NS on CA | HS on CA | NS on CA | |
SPO on V8A | SPO on V8A; ZGP | SPO on V8A; ZGP | SPO on V8A; ZGP | SPO on V8A; ZGP | |
P. bilorbang | PEC | PEC to ROC | PEC to ROC | PEC to ROC | PEC to ROC |
OOG on CA | NS on CA | NS on CA | NS on CA | NS on CA | |
SPO on V8A | SPO on V8A | SPO on V8A | no SPO on V8A | no SPO on V8A | |
P. lacustris-1 | CHC | CHC | CHC; CC | CHC | CHC |
NS on CA | NS on CA | NS on CA | NS on CA | NS on CA | |
SPO on V8A; RS | SPO on V8A; ZGP | SPO on V8A; ZGP | sSPO on V8A | SPO on V8A; RS | |
P. lacustris-2 | CHC | CHC | CHC; CC | CHC | CHC |
NS on CA | NS on CA | NS on CA | NS on CA | NS on CA | |
SPO on V8A; RS | SPO on V8A; RS | SPO on V8A; ZGP | SPO on V8A; RS | SPO on V8A; RS | |
P. pseudocryptogea | CHC | CHC | CHC; CC | CHC | CHC |
NS on CA | NS on CA | NS on CA | NS on CA | NS on CA | |
sSPO on V8A | sSPO on V8A | sSPO on V8A | sSPO on V8A | no SPO on V8A | |
P. syringae | PEC | PEC; sl RG | PEC; CC; RG | PEC | PEC |
HS on CA | HS on CA | HS on CA | HS on CA | NS on CA | |
sSPO on V8A | no SPO on V8A | no SPO on V8A | no SPO on V8A | no SPO on V8A | |
P. polonica | ROSC | ROSC | ROSC; hl CC | STC | STC |
sHS on CA | HS on CA | HS on CA | NS on CA | sHS on CA | |
no SPO on V8A | no SPO on V8A | no SPO on V8A | no SPO on V8A | no SPO on V8A | |
P. honggalleglyana-1 | PEC | PEC | PEC; highly CC | PEC | PEC to STC |
CH and HS on CA | CH and HS on CA | CH and HS on CA | NS on CA | NS on CA | |
sSPO on V8A | no SPO on V8A | no SPO on V8A | no SPO on V8A | no SPO on V8A | |
P. honggalleglyana-2 | PEC | PEC | PEC; CC; RG | PEC | PEC |
CH and HS on CA | CH and HS on CA | CH and HS on CA | HS on CA | HS on CA | |
sSPO on V8A | no SPO on V8A | no SPO on V8A | no SPO on V8A | no SPO on V8A | |
P. honggalleglyana-3 | PEC | PEC | PEC; CC; sl RG | PEC | PEC |
CH and HS on CA | CH and HS on CA | CH and HS on CA | NS on CA | NS on CA | |
no SPO on V8A | no SPO on V8A | no SPO on V8A | no SPO on V8A | no SPO on V8A | |
P. gallica | CHC | CHC, hl CC | NG on CA | CHC, hl CC | CHC, hl CC; sl RG |
NS on CA | CH on CA | sCH on CA | sCH on CA | ||
SPO on V8A; ZGP | no SPO on V8A | NG on V8A | no SPO on V8A | no SPO on V8A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christova, P.K. Potential of Phytophthora Species to Exist in Marine Habitats. Ecologies 2025, 6, 61. https://doi.org/10.3390/ecologies6030061
Christova PK. Potential of Phytophthora Species to Exist in Marine Habitats. Ecologies. 2025; 6(3):61. https://doi.org/10.3390/ecologies6030061
Chicago/Turabian StyleChristova, Petya Koeva. 2025. "Potential of Phytophthora Species to Exist in Marine Habitats" Ecologies 6, no. 3: 61. https://doi.org/10.3390/ecologies6030061
APA StyleChristova, P. K. (2025). Potential of Phytophthora Species to Exist in Marine Habitats. Ecologies, 6(3), 61. https://doi.org/10.3390/ecologies6030061