Role of Agricultural Management in Short-Term Monitoring of Arthropod Diversity at Field Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
- Stubble: an agricultural field previously cultivated with durum wheat (Triticum durum) harvested on 14th of July. At the time of sampling, the field was characterized by the presence of stubble, in terms only of stems of around 10–12 cm because the straw was collected on 16th of July.
- Poplar: A 12-year-old medium rotation forestry plantation for biomass production, currently in its second harvest cycle (last utilization in 2022) with 3-year-old plants. The plantation is managed by shredding the herbaceous component in the inter-row during the autumn–winter months. During the time of sampling, natural vegetation was flowering in the inter-row.
- Agroforestry: An agroforestry field of poplars was established through the conversion of a 12-year-old poplar plantation for biomass production, currently in its second harvest cycle, with 3-year-old plants. This field differs from the poplar plantation by having an inter-row spacing of 6 m (compared to 3 m in the poplar field) and has been cultivated with safflower under. At the time of sampling, it was flowering.
- Eucalyptus: A medium rotation forestry plantation of eucalyptus, with 12-year-old plants, managed similarly to the poplar plantation (inter-row shredding in autumn-winter), and with natural vegetation flowering in the inter-row at the time of sampling.
- Safflower: An agricultural field cultivated with safflower that was flowering at the time of sampling.
2.2. Collection Method and Order Identification
2.3. Diversity Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duru, M.; Therond, O.; Martin, G.; Martin-Clouaire, R.; Magne, M.A.; Justes, E.; Journet, E.P.; Aubertot, J.N.; Savary, S.; Bergez, J.E.; et al. How to Implement Biodiversity-Based Agriculture to Enhance Ecosystem Services: A Review. Agron. Sustain. Dev. 2015, 35, 1259–1281. [Google Scholar] [CrossRef]
- Schmeller, D.S.; Mihoub, J.B.; Bowser, A.; Arvanitidis, C.; Costello, M.J.; Fernandez, M.; Geller, G.N.; Hobern, D.; Kissling, W.D.; Regan, E.; et al. An Operational Definition of Essential Biodiversity Variables. Biodivers. Conserv. 2017, 26, 2967–2972. [Google Scholar] [CrossRef]
- Wirth, D.A. The Sixth Session (Part Two) and Seventh Session of the Conference of the Parties to the Framework Convention on Climate Change. Am. J. Int. Law. 2002, 96, 648–660. [Google Scholar] [CrossRef]
- UN IRB. Convention on Biological Diversity. In Treaty Collection; United Nations: New York, NY, USA, 1992. [Google Scholar]
- Chivian, M.D.E.; Bernstein, M.D. How Our Health Depends on Biodiversity; Center for Health and Global Environment: Boston, MA, USA, 2010. [Google Scholar]
- Zimmerer, K.S. Biological Diversity in Agriculture and Global Change. Annu. Rev. Environ. Resour. 2010, 35, 137–166. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape Perspectives on Agricultural Intensification and Biodiversity–Ecosystem Service Management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Tscharntke, T.; Bommarco, R.; Clough, Y.; Crist, T.O.; Kleijn, D.; Rand, T.A.; Tylianakis, J.M.; van Nouhuys, S.; Vidal, S. Conservation Biological Control and Enemy Diversity on a Landscape Scale. Biol. Control 2007, 43, 294–309. [Google Scholar] [CrossRef]
- Carvalheiro, L.G.; Veldtman, R.; Shenkute, A.G.; Tesfay, G.B.; Pirk, C.W.W.; Donaldson, J.S.; Nicolson, S.W. Natural and Within-farmland Biodiversity Enhances Crop Productivity. Ecol. Lett. 2011, 14, 251–259. [Google Scholar] [CrossRef]
- Swift, M.J.; Anderson, J.M. 2 Biodiversity and Ecosystem Function in Agricultural Systems. In Biodiversity and Ecosystem Function; Springer: Berlin/Heidelberg, Germany, 1994; pp. 15–41. [Google Scholar]
- Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M.; Martin, J. Functional Landscape Heterogeneity and Animal Biodiversity in Agricultural Landscapes. Ecol. Lett. 2011, 14, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Outhwaite, C.L.; McCann, P.; Newbold, T. Agriculture and Climate Change Are Reshaping Insect Biodiversity Worldwide. Nature 2022, 605, 97–102. [Google Scholar] [CrossRef]
- Raven, P.H.; Wagner, D.L. Agricultural Intensification and Climate Change Are Rapidly Decreasing Insect Biodiversity. Proc. Natl. Acad. Sci. USA 2021, 118, e2002548117. [Google Scholar] [CrossRef]
- Crist, T.O.; Peters, V.E. Landscape and Local Controls of Insect Biodiversity in Conservation Grasslands: Implications for the Conservation of Ecosystem Service Providers in Agricultural Environments. Land 2014, 3, 693–718. [Google Scholar] [CrossRef]
- Duelli, P.; Obrist, M.K. In Search of the Best Correlates for Local Organismal Biodiversity in Cultivated Areas. Biodivers. Conserv. 1998, 7, 297–309. [Google Scholar] [CrossRef]
- Concepción, E.D.; Díaz, M.; Baquero, R.A. Effects of Landscape Complexity on the Ecological Effectiveness of Agri-Environment Schemes. Landsc. Ecol. 2008, 23, 135–148. [Google Scholar] [CrossRef]
- Duelli, P. Biodiversity Evaluation in Agricultural Landscapes: An Approach at Two Different Scales. Agric. Ecosyst. Environ. 1997, 62, 81–91. [Google Scholar] [CrossRef]
- Gallé, R.; Császár, P.; Makra, T.; Gallé-Szpisjak, N.; Ladányi, Z.; Torma, A.; Ingle, K.; Szilassi, P. Small-Scale Agricultural Landscapes Promote Spider and Ground Beetle Densities by Offering Suitable Overwintering Sites. Landsc. Ecol. 2018, 33, 1435–1446. [Google Scholar] [CrossRef]
- Williams, J.J.; Newbold, T. Local Climatic Changes Affect Biodiversity Responses to Land Use: A Review. Divers. Distrib. 2020, 26, 76–92. [Google Scholar] [CrossRef]
- Zapparoli, M. Urban Development and Insect Biodiversity of the Rome Area, Italy. Landsc. Urban Plan. 1997, 38, 77–86. [Google Scholar] [CrossRef]
- Tassoni, S.; Becker, D.; Kasten, M.K.; Morinière, J.; Grass, I. Insect Conservation in Agricultural Landscapes Needs Both High Crop Heterogeneity and Semi-Natural Habitats. Glob. Ecol. Conserv. 2024, 55, e03218. [Google Scholar] [CrossRef]
- Pari, L.; Bergonzoli, S.; Cozzolino, L.; Baldi, G.M.; Falce, M.; Alexopoulou, E. Mechanical Harvesting of Marginal Land and Agroforestry Field: New Insights from Safflower for Bio-Product Production. Agronomy 2024, 14, 2268. [Google Scholar] [CrossRef]
- Smith, J. Agroforestry: Reconciling Production with Protection of the Environment a Synopsis of Research Literature; Organic Research Centre: Newbury, UK, 2010. [Google Scholar]
- Kay, S.; Graves, A.; Palma, J.H.N.; Moreno, G.; Roces-Díaz, J.V.; Aviron, S.; Chouvardas, D.; Crous-Duran, J.; Ferreiro-Domínguez, N.; de Jalón, S.G. Agroforestry Is Paying off–Economic Evaluation of Ecosystem Services in European Landscapes with and without Agroforestry Systems. Ecosyst. Serv. 2019, 36, 100896. [Google Scholar] [CrossRef]
- Pardon, P.; Reubens, B.; Mertens, J.; Verheyen, K.; De Frenne, P.; De Smet, G.; Van Waes, C.; Reheul, D. Effects of Temperate Agroforestry on Yield and Quality of Different Arable Intercrops. Agric. Syst. 2018, 166, 135–151. [Google Scholar] [CrossRef]
- Peters, M.K.; Hemp, A.; Appelhans, T.; Becker, J.N.; Behler, C.; Classen, A.; Detsch, F.; Ensslin, A.; Ferger, S.W.; Frederiksen, S.B. Climate–Land-Use Interactions Shape Tropical Mountain Biodiversity and Ecosystem Functions. Nature 2019, 568, 88–92. [Google Scholar] [CrossRef] [PubMed]
- del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef]
- Füssel, H.-M.; Klein, R.J.T. Climate Change Vulnerability Assessments: An Evolution of Conceptual Thinking. Clim. Change 2006, 75, 301–329. [Google Scholar] [CrossRef]
- Midas Eu Project. Available online: https://www.midas-bioeconomy.eu/ (accessed on 25 April 2025).
- Shah Habibullah, M.; Haji Din, B.; Tan, S.-H.; Zahid, H. Impact of Climate Change on Biodiversity Loss: Global Evidence. Environ. Sci. Pollut. Res. 2021, 29, 1073–1086. [Google Scholar] [CrossRef]
- Daskalova, G.N.; Phillimore, A.B.; Myers-Smith, I.H. Accounting for Year Effects and Sampling Error in Temporal Analyses of Invertebrate Population and Biodiversity Change: A Comment on Seibold et al. 2019. Insect Conserv. Divers. 2021, 14, 149–154. [Google Scholar] [CrossRef]
- Lancaster, J. Movement and Dispersion of Insects in Stream Channels: What Role Does Flow Play? In Aquatic Insects: Challenges to Populations; CABI: Egham, UK, 2008; pp. 139–157. [Google Scholar]
- Bell, J.R.; Bohan, D.A.; Shaw, E.M.; Weyman, G.S. Ballooning Dispersal Using Silk: World Fauna, Phylogenies, Genetics and Models. Bull. Entomol. Res. 2005, 95, 69–114. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Wade, M.R.; Wratten, S.D.; Bengtsson, J.; Kleijn, D. Insect Conservation in Agricultural Landscapes. In Insect Conservation Biology; CAB International: Egham, UK, 2007; pp. 383–404. [Google Scholar]
- Kaczmarek, M.; Entling, M.H.; Hoffmann, C. Using Malaise Traps and Metabarcoding for Biodiversity Assessment in Vineyards: Effects of Weather and Trapping Effort. Insects 2022, 13, 507. [Google Scholar] [CrossRef]
- Clergue, B.; Amiaud, B.; Pervanchon, F.; Lasserre-Joulin, F.; Plantureux, S. Biodiversity: Function and assessment in agricultural areas: A review. In Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2009; pp. 309–327. [Google Scholar]
- McGeoch, M.A. The Selection, Testing and Application of Terrestrial Insects as Bioindicators. Biol. Rev. 1998, 73, 181–201. [Google Scholar] [CrossRef]
- Oliver, I.A.N.; Beattie, A.J. Designing a Cost-effective Invertebrate Survey: A Test of Methods for Rapid Assessment of Biodiversity. Ecol. Appl. 1996, 6, 594–607. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; John Wiley & Sons: Hoboken, NJ, USA, 2003; ISBN 0632056339. [Google Scholar]
- Conrad, K.F.; Fox, R.; Woiwod, I.P. Monitoring Biodiversity: Measuring Long-Term Changes in Insect Abundance. In Insect Conservation Biology; CAB International: Egham, UK, 2007. [Google Scholar]
- Baczkowski, A.J.; Joanes, D.N.; Shamia, G.M. Properties of a Generalized Diversity Index. J. Theor. Biol. 1997, 188, 207–213. [Google Scholar] [CrossRef]
- Doblas-Miranda, E.; Paquette, A.; Work, T.T. Intercropping Trees’ Effect on Soil Oribatid Diversity in Agro-Ecosystems. Agrofor. Syst. 2014, 88, 671–678. [Google Scholar] [CrossRef]
- Szigeti, N.; Berki, I.; Vityi, A.; Winkler, D. Soil Mesofauna and Herbaceous Vegetation Patterns in an Agroforestry Landscape. Agrofor. Syst. 2022, 96, 773–786. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for Ecosystem Services and Environmental Benefits: An Overview; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9048133238. [Google Scholar]
- Lohmann, U.; Sausen, R.; Bengtsson, L.; Cubasch, U.; Perlwitz, J.; Roeckner, E. The Köppen Climate Classification as a Diagnostic Tool for General Circulation Models. Clim. Res. 1993, 3, 177–193. [Google Scholar] [CrossRef]
- Cui, D.; Liang, S.; Wang, D. Observed and Projected Changes in Global Climate Zones Based on Köppen Climate Classification. Wiley Interdiscip. Rev. Clim. Change 2021, 12, e701. [Google Scholar] [CrossRef]
- Schmidt, O.; Schmidt, S.; Häuser, C.L.; Hausmann, A.; Van Vu, L. Using Malaise Traps for Collecting Lepidoptera (Insecta), with Notes on the Preparation of Macrolepidoptera from Ethanol. Biodivers. Data J. 2019, 7, e32192. [Google Scholar] [CrossRef]
- Uhler, J.; Haase, P.; Hoffmann, L.; Hothorn, T.; Schmidl, J.; Stoll, S.; Welti, E.A.R.; Buse, J.; Müller, J. A comparison of different Malaise trap types. Insect Conserv. Divers. 2022, 15, 666–672. [Google Scholar] [CrossRef]
- McCravy, K.W.; Geroff, R.K.; Gibbs, J. Malaise Trap Sampling Efficiency for Bees (Hymenoptera: Apoidea) in a Restored Tallgrass Prairie. Fla. Entomol. 2016, 99, 321–323. [Google Scholar] [CrossRef]
- Marquina, D.; Buczek, M.; Ronquist, F.; Łukasik, P. The Effect of Ethanol Concentration on the Morphological and Molecular Preservation of Insects for Biodiversity Studies. Peer J. 2021, 9, e10799. [Google Scholar] [CrossRef]
- ISO 18134-2:2017; Solid Biobuels Determination of Moisture Content—Oven Dry Method—Part 2 Total Moisture—Simplified Method. ISO: Geneva, Switzerland, 2017.
- Fedor, P.; Zvaríková, M. Biodiversity Indices. Encycl. Ecol. 2019, 2, 337–346. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Spellerberg, I.F.; Fedor, P.J. A Tribute to Claude Shannon (1916–2001) and a Plea for More Rigorous Use of Species Richness, Species Diversity and the ‘Shannon–Wiener’Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef]
- Nagendra, H. Opposite Trends in Response for the Shannon and Simpson Indices of Landscape Diversity. Appl. Geogr. 2002, 22, 175–186. [Google Scholar] [CrossRef]
- Gregorius, H.-R.; Gillet, E.M. Generalized Simpson-Diversity. Ecol. Modell. 2008, 211, 90–96. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T. Past: Paleontological Statistics Software Package for Educaton and Data Anlysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- Favila, M.E.; Halffter, G. The use of indicator groups for measuring biodiversity as related to community structure and function. Acta Zool. Mex. 1997, 72, 1–25. [Google Scholar] [CrossRef]
- Noss, R.F. Indicators for Monitoring Biodiversity: A Hierarchical Approach. Conserv. Biol. 1990, 4, 355–364. [Google Scholar] [CrossRef]
- Hortal, J.; Roura-Pascual, N.; Sanders, N.J.; Rahbek, C. Understanding (Insect) Species Distributions across Spatial Scales. Ecography 2010, 33, 51–53. [Google Scholar] [CrossRef]
- Kuchenbecker, J.; Macedo-Reis, L.E.; Fagundes, M.; Neves, F.S. Spatiotemporal Distribution of Herbivorous Insects Along Always-Green Mountaintop Forest Islands. Front. For. Glob. Change 2021, 4, 709403. [Google Scholar] [CrossRef]
- Schweiger, O.; Maelfait, J.P.; Van Wingerden, W.; Hendrickx, F.; Billeter, R.; Speelmans, M.; Augenstein, I.; Aukema, B.; Aviron, S.; Bailey, D.; et al. Quantifying the Impact of Environmental Factors on Arthropod Communities in Agricultural Landscapes across Organizational Levels and Spatial Scales. J. Appl. Ecol. 2005, 42, 1129–1139. [Google Scholar] [CrossRef]
- Cushman, S.A.; McGarigal, K. Multi-Scale Decomposition of Species-Environment Relationships. Landsc. Ecol. 2002, 17, 637–646. [Google Scholar] [CrossRef]
- Viterbi, R.; Cerrato, C.; Bionda, R.; Provenzale, A. Effects of Temperature Rise on Multi-Taxa Distributions in Mountain Ecosystems. Diversity 2020, 12, 210. [Google Scholar] [CrossRef]
- Samways, M.J.; Barton, P.S.; Birkhofer, K.; Chichorro, F.; Deacon, C.; Fartmann, T.; Fukushima, C.S.; Gaigher, R.; Habel, J.C.; Hallmann, C.A. Solutions for Humanity on How to Conserve Insects. Biol. Conserv. 2020, 242, 108427. [Google Scholar] [CrossRef]
- Obrist, M.K.; Duelli, P. Rapid Biodiversity Assessment of Arthropods for Monitoring Average Local Species Richness and Related Ecosystem Services. Biodivers. Conserv. 2010, 19, 2201–2220. [Google Scholar] [CrossRef]
- Ebeling, A.; Hines, J.; Hertzog, L.R.; Lange, M.; Meyer, S.T.; Simons, N.K.; Weisser, W.W. Plant Diversity Effects on Arthropods and Arthropod-Dependent Ecosystem Functions in a Biodiversity Experiment. Basic. Appl. Ecol. 2018, 26, 50–63. [Google Scholar] [CrossRef]
- Gutiérrez-Chacón, C.; Valderrama-A., C.; Klein, A.-M. Biological Corridors as Important Habitat Structures for Maintaining Bees in a Tropical Fragmented Landscape. J. Insect Conserv. 2020, 24, 187–197. [Google Scholar] [CrossRef]
- Hernandez-Aguilera, J.N.; Conrad, J.M.; Gómez, M.I.; Rodewald, A.D. The Economics and Ecology of Shade-Grown Coffee: A Model to Incentivize Shade and Bird Conservation. Ecol. Econ. 2019, 159, 110–121. [Google Scholar] [CrossRef]
- McDermott, M.E.; Rodewald, A.D. Conservation Value of Silvopastures to Neotropical Migrants in Andean Forest Flocks. Biol. Conserv. 2014, 175, 140–147. [Google Scholar] [CrossRef]
Date | Mean Temp. (°C) | Max Temp. (°C) | Min Temp. (°C) | Mean Wind Speed (km·h−1) | Max Wind Speed (km·h−1) | Mean Daily Air Moisture (%) |
---|---|---|---|---|---|---|
21 July 2024 | 29.75 | 39.80 | 19.90 | 2.90 | 8.00 | 41.69 |
22 July 2024 | 29.10 | 38.30 | 19.40 | 2.37 | 8.00 | 42.35 |
23 July 2024 | 28.33 | 38.40 | 18.70 | 2.10 | 6.40 | 45.21 |
24 July 2024 | 28.86 | 38.10 | 18.80 | 2.40 | 8.00 | 43.46 |
25 July 2024 | 28.38 | 37.40 | 19.30 | 2.60 | 8.00 | 48.29 |
26 July 2024 | 28.01 | 35.10 | 20.50 | 3.74 | 9.70 | 49.33 |
27 July 2024 | 26.41 | 35.40 | 19.30 | 2.17 | 8.00 | 52.92 |
28 July 2024 | 27.81 | 37.30 | 19.70 | 1.87 | 8.00 | 52.92 |
Order | Richness | Mean ± St. Dev. | |
---|---|---|---|
Stubble | Diptera | 211 | 42.20 ± 20.29 |
Lepidoptera | 5 | 1.00 ± 1.26 | |
Hymenoptera | 54 | 10.80 ± 6.52 | |
Coleoptera | 12 | 2.40 ± 2.06 | |
Heteroptera | 9 | 1.80 ± 1.94 | |
Ephemeroptera | 0 | / | |
Arachnida | 2 | 0.40 ± 0.49 | |
Poplars | Diptera | 1006 | 201.20 ± 109.75 |
Lepidoptera | 122 | 24.40 ± 8.4 | |
Hymenoptera | 391 | 78.20 ± 38.67 | |
Coleoptera | 211 | 42.20 ± 7.19 | |
Heteroptera | 208 | 41.60 ± 17.72 | |
Ephemeroptera | 6 | 1.20 ± 1.47 | |
Arachnida | 34 | 6.80 ± 1.83 | |
Agroforestry | Diptera | 1325 | 265.00 ± 209.39 |
Lepidoptera | 183 | 36.60 ± 15.70 | |
Hymenoptera | 966 | 193.20 ± 166.38 | |
Coleoptera | 261 | 52.20 ± 15.56 | |
Heteroptera | 278 | 55.60 ± 26.45 | |
Ephemeroptera | 45 | 9.00 ± 4.94 | |
Arachnida | 31 | 6.20 ± 3.71 | |
Eucalyptus | Diptera | 192 | 38.40 ± 20.51 |
Lepidoptera | 21 | 4.20 ± 1.72 | |
Hymenoptera | 70 | 14.00 ± 2.28 | |
Coleoptera | 27 | 5.40 ± 2.06 | |
Heteroptera | 32 | 6.40 ± 3.14 | |
Ephemeroptera | 3 | 0.60 ± 1.20 | |
Arachnida | 23 | 4.60 ± 1.02 | |
Safflower | Diptera | 428 | 85.60 ± 46.36 |
Lepidoptera | 150 | 30.00 ± 12.71 | |
Hymenoptera | 570 | 114.00 ± 66.65 | |
Coleoptera | 47 | 9.40 ± 6.86 | |
Heteroptera | 39 | 7.80 ± 4.49 | |
Ephemeroptera | 19 | 3.80 ± 2.32 | |
Arachnida | 15 | 3.00 ± 2.28 |
Systems | Total Arthropods (n) | Total Dry Weight (g) | Unitary Dry Weight (g) | Shannon Index | Simpson Index |
---|---|---|---|---|---|
Stubble | 293 | 5.34 | 0.0182 | 0.91 | 0.55 |
Poplars | 1978 | 11.46 | 0.0058 | 1.40 | 0.32 |
Agroforestry | 3089 | 12.92 | 0.0042 | 1.43 | 0.30 |
Eucalyptus | 368 | 5.01 | 0.0136 | 1.44 | 0.33 |
Safflower | 1268 | 7.47 | 0.0059 | 1.32 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergonzoli, S.; Cozzolino, L.; Romano, E.; Pari, L. Role of Agricultural Management in Short-Term Monitoring of Arthropod Diversity at Field Scale. Ecologies 2025, 6, 45. https://doi.org/10.3390/ecologies6030045
Bergonzoli S, Cozzolino L, Romano E, Pari L. Role of Agricultural Management in Short-Term Monitoring of Arthropod Diversity at Field Scale. Ecologies. 2025; 6(3):45. https://doi.org/10.3390/ecologies6030045
Chicago/Turabian StyleBergonzoli, Simone, Luca Cozzolino, Elio Romano, and Luigi Pari. 2025. "Role of Agricultural Management in Short-Term Monitoring of Arthropod Diversity at Field Scale" Ecologies 6, no. 3: 45. https://doi.org/10.3390/ecologies6030045
APA StyleBergonzoli, S., Cozzolino, L., Romano, E., & Pari, L. (2025). Role of Agricultural Management in Short-Term Monitoring of Arthropod Diversity at Field Scale. Ecologies, 6(3), 45. https://doi.org/10.3390/ecologies6030045