Interactions Between Sessile Species Groups from Wave-Exposed Rocky Intertidal Habitats in Atlantic Canada Evaluated Using Multiannual Surveys
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menge, B.A.; Sutherland, J.P. Community regulation: Variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 1987, 130, 730–757. [Google Scholar] [CrossRef]
- Bruno, J.F.; Stachowicz, J.J.; Bertness, M.D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 2003, 18, 119–125. [Google Scholar] [CrossRef]
- Vellend, M. The Theory of Ecological Communities; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Stephenson, T.A.; Stephenson, A. Life between tide marks in North America. IIIA. Nova Scotia and Prince Edward Island: Descripton of the region. J. Ecol. 1954, 42, 14–45. [Google Scholar] [CrossRef]
- Scrosati, R.; Heaven, C. Spatial trends in community richness, diversity, and evenness across rocky intertidal environmental stress gradients in eastern Canada. Mar. Ecol. Prog. Ser. 2007, 342, 1–14. [Google Scholar] [CrossRef]
- Arribas, L.P.; Donnarumma, L.; Palomo, M.G.; Scrosati, R.A. Intertidal mussels as ecosystem engineers: Their associated invertebrate biodiversity under contrasting wave exposures. Mar. Biodiv. 2014, 44, 203–211. [Google Scholar] [CrossRef]
- Scrosati, R.A.; Ellrich, J.A.; Freeman, M.J. Half-hourly changes in intertidal temperature at nine wave-exposed locations along the Atlantic Canadian coast: A 5.5-year study. Earth Syst. Sci. Data 2020, 12, 2695–2703. [Google Scholar] [CrossRef]
- Canadian Ice Service. Available online: https://www.canada.ca/en/environment-climate-change/services/ice-forecasts-observations.html (accessed on 30 June 2025).
- Payne, N.L.; Smith, J.A.; van der Meulen, D.E.; Taylor, M.D.; Watanabe, Y.Y.; Takahashi, A.; Marzullo, T.A.; Gray, C.A.; Cadiou, G.; Suthers, I.M. Temperature dependence of fish performance in the wild: Links with species biogeography and physiological thermal tolerance. Funct. Ecol. 2016, 30, 903–912. [Google Scholar] [CrossRef]
- Seabra, R.; Wethey, D.S.; Santos, A.M.; Gomes, F.; Lima, F.P. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature. Glob. Change Biol. 2016, 22, 3320–3331. [Google Scholar] [CrossRef]
- Saucier, F.J.; Roy, F.; Gilbert, D.; Pellerin, P.; Ritchie, H. Modeling the formation and circulation processes of water masses and sea ice in the Gulf of St. Lawrence, Canada. J. Geophys. Res. 2003, 108, 3269. [Google Scholar] [CrossRef]
- McCook, L.J.; Chapman, A.R.O. Patterns and variations in natural succession following massive ice scour of a rocky intertidal seashore. J. Exp. Mar. Biol. Ecol. 1997, 214, 121–147. [Google Scholar] [CrossRef]
- Petzold, W.; Willers, M.T.; Scrosati, R.A. Visual record of intertidal disturbance caused by sea ice in the spring on the Atlantic coast of Nova Scotia. F1000Research 2014, 3, 112. [Google Scholar] [CrossRef]
- Scrosati, R.A.; Freeman, M.J.; Ellrich, J.A.; Petzold, W. Biogeography of algae and invertebrates from wave-exposed rocky intertidal habitats along the Atlantic coast of Nova Scotia (Canada): Latitudinal and interannual patterns and possible underlying drivers. Front. Mar. Sci. 2022, 9, 987162. [Google Scholar] [CrossRef]
- Scrosati, R.A.; Ellrich, J.A. Benthic-pelagic coupling and bottom-up forcing in rocky intertidal communities along the Atlantic Canadian coast. Ecosphere 2018, 9, e02229. [Google Scholar] [CrossRef]
- Scrosati, R.A.; Ellrich, J.A. A 5-year study (2014–2018) of the relationship between coastal phytoplankton abundance and intertidal barnacle size along the Atlantic Canadian coast. PeerJ 2019, 7, e6892. [Google Scholar] [CrossRef] [PubMed]
- Paine, R.T. Marine Rocky Shores and Community Ecology: An Experimentalist’s Perspective; Ecology Institute: Oldendorf, Germany, 1994. [Google Scholar]
- Menge, B.A. Indirect effects in marine rocky intertidal interaction webs: Patterns and importance. Ecol. Monogr. 1995, 65, 21–74. [Google Scholar] [CrossRef]
- Underwood, A.J. Experiments in Ecology. Their Logical Design and Interpretation using Analysis of Variance; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Sagarin, R.; Pauchard, A. Observational approaches in ecology open new ground in a changing world. Front. Ecol. Environ. 2010, 8, 379–386. [Google Scholar] [CrossRef]
- Siegel, K.; Dee, L.E. Foundations and future directions for causal inference in ecological research. Ecol. Lett. 2025, 28, e70053. [Google Scholar] [CrossRef]
- Leibold, M.A.; Rudolph, F.J.; Blanchet, F.G.; De Meester, L.; Gravel, D.; Hartig, F.; Peres-Neto, P.; Shoemaker, L.; Chase, J.M. The internal structure of metacommunities. Oikos 2022, 2022, e08618. [Google Scholar] [CrossRef]
- Thuiller, W.; Calderón-Sanou, I.; Chalmandrier, L.; Gaüzère, P.; O’Connor, L.M.J.; Ohlmann, M.; Poggiato, G.; Münkemüller, T. Navigating the integration of biotic interactions in biogeography. J. Biogeogr. 2024, 51, 550–559. [Google Scholar] [CrossRef]
- Menge, B.A.; Menge, D.N.L. Dynamics of coastal meta-ecosystems: The intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecol. Monogr. 2013, 83, 283–310. [Google Scholar] [CrossRef]
- Lany, N.K.; Zarnetske, P.L.; Gouhier, T.C.; Menge, B.A. Incorporating context dependency of species interactions in species distribution models. Integr. Comp. Biol. 2017, 57, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Spiecker, B.J.; Menge, B.A. Testing effects of bottom-up factors, grazing, and competition on New Zealand rocky intertidal algal communities. Ecol. Evol. 2024, 13, e10704. [Google Scholar] [CrossRef]
- Hawkins, S.J.; Pack, K.E.; Firth, L.B.; Mieszkowska, N.; Evans, A.J.; Martins, G.M.; Åberg, P.; Adams, L.C.; Arenas, F.; Boaventura, D.M.; et al. The intertidal zone of the north-east Atlantic region: Pattern and process. In Interactions in the Marine Benthos: Global Patterns and Processes; Hawkins, S.J., Bohn, K., Firth, L.B., Williams, G.A., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 7–46. [Google Scholar]
- Palomo, M.G.; Bagur, M.; Calla, S.; Dalton, M.C.; Soria, S.A.; Hawkins, S.J. Biodiversity and interactions on the intertidal rocky shores of Argentina (south-west Atlantic). In Interactions in the Marine Benthos: Global Patterns and Processes; Hawkins, S.J., Bohn, K., Firth, L.B., Williams, G.A., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 164–189. [Google Scholar]
- Menge, B.A.; Caselle, J.E.; Milligan, K.; Gravem, S.A.; Gouhier, T.C.; White, J.W.; Barth, J.A.; Blanchette, C.A.; Carr, M.H.; Chan, F.; et al. Integrating coastal oceanic and benthic ecological approaches for understanding large-scale meta-ecosystem dynamics. Oceanography 2019, 32, 38–49. [Google Scholar] [CrossRef]
- Ishida, K.; Tachibana, M.; Hori, M.; Okuda, T.; Yamamoto, T.; Nakaoka, M.; Noda, T. Quantifying the dynamics of rocky intertidal sessile communities along the Pacific coast of Japan: Implications for ecological resilience. Sci. Rep. 2021, 11, 16073. [Google Scholar] [CrossRef]
- Thyrring, J.; Wegeberg, S.; Blicher, M.E.; Krause-Jensen, D.; Høgslund, S.; Olesen, B.; Wiktor, J.; Mouritsen, K.N.; Peck, L.S.; Sejr, M.K. Latitudinal patterns in intertidal ecosystem structure in West Greenland suggest resilience to climate change. Ecography 2021, 44, 1156–1168. [Google Scholar] [CrossRef]
- Bertness, M.D.; Leonard, G.H.; Levine, J.M.; Schmidt, P.R.; Ingraham, A.O. Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 1999, 80, 2711–2726. [Google Scholar] [CrossRef]
- Joseph, L.; Cusson, M. Resistance of benthic intertidal communities to multiple disturbances and stresses. Mar. Ecol. Prog. Ser. 2015, 534, 49–64. [Google Scholar] [CrossRef]
- Beermann, A.J.; Ellrich, J.A.; Molis, M.; Scrosati, R.A. Effects of seaweed canopies and adult barnacles on barnacle recruitment: The interplay of positive and negative influences. J. Exp. Mar. Biol. Ecol. 2013, 448, 162–170. [Google Scholar] [CrossRef]
- McGuinness, K.A. Short-term effects of sessile organisms on colonization of intertidal boulders. J. Exp. Mar. Biol. Ecol. 1988, 116, 159–175. [Google Scholar] [CrossRef]
- Menge, B.A.; Berlow, E.L.; Blanchette, C.A.; Navarrete, S.A.; Yamada, S.B. The keystone species concept: Variation in interaction strength in a rocky intertidal habitat. Ecol. Monogr. 1994, 64, 249–286. [Google Scholar] [CrossRef]
- Petraitis, P.S. The role of growth in maintaining spatial dominance by mussels (Mytilus edulis). Ecology 1995, 76, 1337–1346. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Noda, T. Effects of mussels on competitively inferior species: Competitive exclusion to facilitation. Mar. Ecol. Prog. Ser. 2004, 276, 293–298. [Google Scholar] [CrossRef]
- Menge, B.A. Organization of the New England rocky intertidal community: Role of predation, competition, and environmental heterogeneity. Ecol. Monogr. 1976, 46, 355–393. [Google Scholar] [CrossRef]
- Navarrete, S.A.; Castilla, J.C. Barnacle walls as mediators of intertidal mussel recruitment: Effects of patch size on the utilization of space. Mar. Ecol. Prog. Ser. 1990, 68, 113–119. [Google Scholar] [CrossRef]
- Berlow, E.L. From canalization to contingency: Historical effects in a successional rocky intertidal community. Ecol. Monogr. 1997, 67, 435–460. [Google Scholar] [CrossRef]
- Menge, B.A.; Hacker, S.D.; Freidenburg, T.; Lubchenco, J.; Craig, R.; Rilov, G.; Noble, M.; Richmond, E. Potential impact of climate-related changes is buffered by differential responses to recruitment and interactions. Ecol. Monogr. 2011, 81, 493–509. [Google Scholar] [CrossRef]
- Scrosati, R.A.; Ellrich, J.A. Photos of wave-exposed rocky intertidal locations along the Atlantic coast of Nova Scotia, Canada. Available online: https://doi.org/10.6084/m9.figshare.20740879.v1 (accessed on 30 June 2025).
- Ellrich, J.A.; Scrosati, R.A. Videos of rocky intertidal locations along the Atlantic coast of Nova Scotia, Canada. 2018. Available online: https://doi.org/10.6084/m9.figshare.6936308.v1 (accessed on 30 June 2025).
- Innes, D.J.; Bates, J.A. Morphological variation of Mytilus edulis and Mytilus trossulus in eastern Newfoundland. Mar. Biol. 1999, 133, 691–699. [Google Scholar] [CrossRef]
- Riginos, C.; Cunningham, C.W. Local adaptation and species segregation in two mussel (Mytilus edulis × Mytilus trossulus) hybrid zones. Mol. Ecol. 2005, 14, 381–400. [Google Scholar] [CrossRef]
- Cusson, M.; Bourget, E. Small-scale variations in mussel (Mytilus spp.) dynamics and local production. J. Sea Res. 2005, 53, 255–268. [Google Scholar] [CrossRef]
- Le Corre, N.; Martel, A.L.; Guichard, F.; Johnson, L.E. Variation in recruitment: Differentiating the roles of primary and secondary settlement of blue mussels Mytilus spp. Mar. Ecol. Prog. Ser. 2013, 481, 133–146. [Google Scholar] [CrossRef]
- Hunt, H.L.; Scheibling, R.E. Physical and biological factors influencing mussel (Mytilus trossulus, M. edulis) settlement on a wave-exposed rocky shore. Mar. Ecol. Prog. Ser. 1996, 142, 135–145. [Google Scholar] [CrossRef]
- Tam, J.C.; Scrosati, R.A. Mussel and dogwhelk distribution along the NW Atlantic coast: Testing predictions derived from the abundant-centre model. J. Biogeogr. 2011, 38, 1536–1545. [Google Scholar] [CrossRef]
- Zuur, A.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Menge, B.A.; Sanford, E.; Daley, B.A.; Freidenburg, T.L.; Hudson, G.; Lubchenco, J. Interhemispheric comparison of bottom-up effects on community structure: Insights revealed using the comparative-experimental approach. Ecol. Res. 2002, 17, 1–16. [Google Scholar] [CrossRef]
- Duffy, J.E.; Reynolds, P.L.; Boström, C.; Coyer, J.A.; Cusson, M.; Donadi, S.; Douglass, J.G.; Eklöf, J.S.; Engelen, A.H.; Eriksson, B.K.; et al. Biodiversity mediates top–down control in eelgrass ecosystems: A global comparative-experimental approach. Ecol. Lett. 2015, 18, 606–705. [Google Scholar] [CrossRef]
- Krebs, C.J. Ecological Methodology; Addison Wesley Longman: Menlo Park, CA, USA, 1999. [Google Scholar]
- Gibson, D.J. Methods in Comparative Plant Population Ecology; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Navarrete, S.A.; Wieters, E.A.; Broitman, B.R.; Castilla, J.C. Scales of benthic–pelagic coupling and the intensity of species interactions: From recruitment limitation to top-down control. Proc. Natl. Acad. Sci. USA 2005, 102, 18046–18051. [Google Scholar] [CrossRef] [PubMed]
- Raffaelli, D.; Hawkins, S. Intertidal Ecology; Chapman & Hall: London, UK, 1999. [Google Scholar]
- Menge, B.A.; Branch, G.M. Rocky intertidal communities. In Marine Community Ecology; Bertness, M.D., Gaines, S.D., Hay, M.E., Eds.; Sinauer: Sunderland, MA, USA, 2001; pp. 221–251. [Google Scholar]
- Garbary, D.J. The margin of the sea: Survival at the top of the tides. In Algae and Cyanobacteria in Extreme Environments; Seckbach, J., Ed.; Springer: Berlin, Germany, 2007; pp. 173–191. [Google Scholar]
- Denny, M.; Wethey, D. Physical processes that generate patterns in marine communities. In Marine Community Ecology; Bertness, M.D., Gaines, S.D., Hay, M.E., Eds.; Sinauer: Sunderland, MA, USA, 2001; pp. 3–37. [Google Scholar]
- Carrington, E.; Moeser, G.M.; Dimond, J.; Mello, J.J.; Boller, M.L. Seasonal disturbance to mussel beds: Field test of a mechanistic model predicting wave dislodgment. Limnol. Oceanogr. 2009, 54, 978–986. [Google Scholar] [CrossRef]
- Hallett, J.G.; Pimm, S.L. Direct estimation of competition. Am. Nat. 1979, 113, 593–600. [Google Scholar] [CrossRef]
- Heaven, C.S.; Scrosati, R.A. Benthic community composition across gradients of intertidal elevation, wave exposure, and ice scour in Atlantic Canada. Mar. Ecol. Prog. Ser. 2008, 369, 13–23. [Google Scholar] [CrossRef]
- Whorff, J.S.; Whorff, L.L.; Sweet, M.H. Spatial variation in an algal turf community with respect to substratum slope and wave height. J. Mar. Biol. Assoc. U. K. 1995, 75, 429–444. [Google Scholar] [CrossRef]
- Guichard, F.; Bourget, E.; Robert, J.J. Scaling the influence of topographic heterogeneity on intertidal benthic communities: Alternate trajectories mediated by hydrodynamics and shading. Mar. Ecol. Prog. Ser. 2001, 217, 27–41. [Google Scholar] [CrossRef]
- Helmuth, B.; Denny, M.W. Predicting wave exposure in the rocky intertidal zone: Do bigger waves always lead to larger forces? Limnol. Oceanogr. 2003, 48, 1338–1345. [Google Scholar] [CrossRef]
- Munroe, D.M.; Noda, T.; Ikeda, T. Shore level differences in barnacle (Chthamalus dalli) recruitment relative to rock surface topography. J. Exp. Mar. Biol. Ecol. 2010, 392, 188–192. [Google Scholar] [CrossRef]
- Ørberg, S.B.; Krause-Jensen, D.; Mouritsen, K.N.; Olesen, B.; Marbá, N.; Larsen, M.H.; Blicher, M.E.; Sejr, M.K. Canopy-forming macroalgae facilitate recolonization of Sub-Arctic intertidal fauna and reduce temperature extremes. Front. Mar. Sci. 2018, 5, 332. [Google Scholar] [CrossRef]
- Catalán, A.M.; López, D.N.; Fica-Rojas, E.; Broitman, B.R.; Valdivia, N.; Scrosati, R.A. Foundation species canopies affect understory beta diversity differently depending on species mobility. Ecology 2023, 104, e3999. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, C.A.M.M.; Pardal, A.; Giménez, L.; Ciotti, A.M.; Jenkins, S.R.; Burrows, M.T.; Williams, G.A.; Christofoletti, R.A. Environmental factors have stronger effects than biotic processes in patterns of intertidal populations along the southeast coast of Brazil. Mar. Environ. Res. 2024, 200, 106646. [Google Scholar] [CrossRef] [PubMed]
- Menge, B.A. Predation intensity in a rocky intertidal community. Effect of an algal canopy, wave action, and desiccation on predator feeding rates. Oecologia 1978, 34, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Hunt, H.L.; Scheibling, R.E. Effects of whelk (Nucella lapillus (L.)) predation on mussel (Mytilus trossulus (Gould), M. edulis (L.)) assemblages in tidepools and on emergent rock on a wave-exposed rocky shore in Nova Scotia, Canada. J. Exp. Mar. Biol. Ecol. 1998, 226, 87–113. [Google Scholar] [CrossRef]
- Ellrich, J.A.; Scrosati, R.A.; Molis, M. Predator nonconsumptive effects on prey recruitment weaken with recruit density. Ecology 2015, 96, 611–616. [Google Scholar] [CrossRef]
- Sherker, Z.T.; Ellrich, J.A.; Scrosati, R.A. Predator-induced shell plasticity in mussels hinders predation by drilling snails. Mar. Ecol. Prog. Ser. 2017, 573, 167–175. [Google Scholar] [CrossRef]
- Hacker, S.D.; Menge, B.A.; Nielsen, K.J.; Chan, F.; Gouhier, T.C. Regional processes are stronger determinants of rocky intertidal community dynamics than local biotic interactions. Ecology 2019, 100, e02763. [Google Scholar] [CrossRef]
- Helm, N.; Chytry, K.; Hülber, K.; Moser, D.; Wessely, J.; Gattringer, A.; Hausharter, J.; Pauli, H.; Winkler, M.; Saccone, P.; et al. Fine-scale alpine plant community assembly: Relative roles of environmental sorting, dispersal processes, and species interactions. J. Ecol. 2024, 112, 2745–2757. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scrosati, R.A.; MacDonald, H.L.; Perreault, E.J. Interactions Between Sessile Species Groups from Wave-Exposed Rocky Intertidal Habitats in Atlantic Canada Evaluated Using Multiannual Surveys. Ecologies 2025, 6, 58. https://doi.org/10.3390/ecologies6030058
Scrosati RA, MacDonald HL, Perreault EJ. Interactions Between Sessile Species Groups from Wave-Exposed Rocky Intertidal Habitats in Atlantic Canada Evaluated Using Multiannual Surveys. Ecologies. 2025; 6(3):58. https://doi.org/10.3390/ecologies6030058
Chicago/Turabian StyleScrosati, Ricardo A., Hannah L. MacDonald, and Emilie J. Perreault. 2025. "Interactions Between Sessile Species Groups from Wave-Exposed Rocky Intertidal Habitats in Atlantic Canada Evaluated Using Multiannual Surveys" Ecologies 6, no. 3: 58. https://doi.org/10.3390/ecologies6030058
APA StyleScrosati, R. A., MacDonald, H. L., & Perreault, E. J. (2025). Interactions Between Sessile Species Groups from Wave-Exposed Rocky Intertidal Habitats in Atlantic Canada Evaluated Using Multiannual Surveys. Ecologies, 6(3), 58. https://doi.org/10.3390/ecologies6030058