Previous Issue
Volume 6, March
 
 

CivilEng, Volume 6, Issue 2 (June 2025) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
29 pages, 4049 KiB  
Review
Energy Dissipation Technologies in Seismic Retrofitting: A Review
by Mohamed Algamati, Abobakr Al-Sakkaf and Ashutosh Bagchi
CivilEng 2025, 6(2), 23; https://doi.org/10.3390/civileng6020023 - 18 Apr 2025
Viewed by 289
Abstract
In order to ensure the safety of existing buildings constructed many years ago in zones with high seismicity, it is very important to consider and apply retrofitting measures. The seismic retrofitting of buildings can be achieved by techniques such as increasing the stiffness [...] Read more.
In order to ensure the safety of existing buildings constructed many years ago in zones with high seismicity, it is very important to consider and apply retrofitting measures. The seismic retrofitting of buildings can be achieved by techniques such as increasing the stiffness and ductility of the building and reducing the seismic demand. Energy dissipative devices such as various types of dampers are among the most popular and widely studied devices for improving the performance of buildings exposed to earthquakes. This paper presents a systematic literature review of the seismic retrofitting of existing buildings using energy dissipating devices. More than 230 journal and conference articles were collected from three well-known scientific resources published from 2010 to 2024. The main classification of papers considered was based on energy-dissipating devices employed for retrofitting goals. According to this analysis, there is a vast number of energy dissipative devices and design methods studied by scholars, and energy dissipation based on friction, viscous, and hysteretic mechanisms are the most useful for dampers. On the other hand, only relatively few articles were found about seismic loss assessment and the economic aspects of buildings retrofitted with the proposed damping tools. Full article
Show Figures

Figure 1

14 pages, 3106 KiB  
Article
Thermal and Flood Resiliency Evaluation of Rigid Pavement Using Various Pavement Characteristics
by Emad Alshammari, Mang Tia, Othman Alanquri, Abdullah Albogami, Ahmed Alsabbagh and Raid S. Alrashidi
CivilEng 2025, 6(2), 22; https://doi.org/10.3390/civileng6020022 - 13 Apr 2025
Viewed by 226
Abstract
Temperature variations have a significant impact on the performance and durability of rigid (concrete) pavement. As concrete is subjected to daily and seasonal temperature changes, it experiences thermal expansion and contraction. These movements, if not properly managed, can lead to cracking, joint deterioration, [...] Read more.
Temperature variations have a significant impact on the performance and durability of rigid (concrete) pavement. As concrete is subjected to daily and seasonal temperature changes, it experiences thermal expansion and contraction. These movements, if not properly managed, can lead to cracking, joint deterioration, and loss of structural integrity. The pavement system is adversely affected by intense heat and significant flooding. This study aims to analyze the impact of several parameters on the performance of rigid pavement under typical, thermal, and flooding situations. This study investigates the properties of concrete and the dimensional design of rigid pavement with FEACONS IV software to assess their impact on the performance of concrete pavement during thermal and flooding conditions. The main conclusions of this study derived from the FEACONS IV analysis are as follows. Rigid pavement can enhance load-carrying capacity due to a lower elastic modulus, adequate flexural strength, and aggregates with a lower coefficient of thermal expansion. Increased thickness of concrete slabs and shorter slab lengths assist in minimizing load- and temperature-induced stresses. The increase in the subgrade modulus reaction value during flooding conditions improves pavement strength. However, in higher thermal conditions, a higher subgrade reaction modulus can increase the stress induced by temperature and load. Rigid pavement using porous limestone aggregate exhibits a reduced elastic modulus and coefficient of thermal expansion, suggesting higher resilience compared to rigid pavement composed of river gravel or granite. The findings suggest that higher thermal conditions will cause pavement damage. Agencies need to account for higher temperatures while designing and maintaining pavement. Flooding saturates the concrete pavement and subgrade layer, adversely affecting its performance over time. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

18 pages, 2681 KiB  
Article
Explainable Machine Learning to Predict the Construction Cost of Power Plant Based on Random Forest and Shapley Method
by Suha Falih Mahdi Alazawy, Mohammed Ali Ahmed, Saja Hadi Raheem, Hamza Imran, Luís Filipe Almeida Bernardo and Hugo Alexandre Silva Pinto
CivilEng 2025, 6(2), 21; https://doi.org/10.3390/civileng6020021 - 5 Apr 2025
Viewed by 409
Abstract
This study aims to develop a reliable method for predicting power plant construction costs during the early planning stages using ensemble machine learning techniques. Accurate cost predictions are essential for project feasibility, and this research highlights the strength of ensemble methods in improving [...] Read more.
This study aims to develop a reliable method for predicting power plant construction costs during the early planning stages using ensemble machine learning techniques. Accurate cost predictions are essential for project feasibility, and this research highlights the strength of ensemble methods in improving prediction accuracy by combining the advantages of multiple models, offering a significant improvement over traditional approaches. This investigation employed the Random Forest (RF) algorithm to estimate the overall construction cost of a power plant. The RF algorithm was contrasted with single-learner machine learning models: Support Vector Regression (SVR) and k-Nearest Neighbors (KNN). Performance measures, comprising the coefficient of determination (R2), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE), were used to evaluate and contrast the performance of the implemented models. Statistical measures demonstrated that the RF approach surpassed alternative models, demonstrating the highest coefficient of determination for testing (R2=0.956) and the lowest Root Mean Square Error (RMSE = 29.27) for the testing dataset. The Shapley Additive Explanation (SHAP) technique was implemented to explain the significance and impact of predictor factors affecting power plant construction costs. The outcomes of this investigation provide crucial information for project decision-makers, allowing them to reduce discrepancies in projected costs and make informed decisions at the beginning of the construction phase. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

22 pages, 5710 KiB  
Article
Experimental Characterization of Cast Explosive Charges Used in Studies of Blast Effects on Structures
by Anselmo S. Augusto, Girum Urgessa, Caio B. Amorim, Robison E. Lopes Júnior, Fausto B. Mendonça, José A. F. F. Rocco and Koshun Iha
CivilEng 2025, 6(2), 20; https://doi.org/10.3390/civileng6020020 - 4 Apr 2025
Cited by 1 | Viewed by 410
Abstract
Structural research teams face significant challenges when conducting studies with explosives, including the costs and inherent risks associated with field detonation tests. This study presents a replicable method for loading spherical and bare TNT-based cast explosive charges, offering reduced costs and minimal risks. [...] Read more.
Structural research teams face significant challenges when conducting studies with explosives, including the costs and inherent risks associated with field detonation tests. This study presents a replicable method for loading spherical and bare TNT-based cast explosive charges, offering reduced costs and minimal risks. Over eighty TNT and Composition B charges (comprising 60% RDX, 39% TNT, and 1% wax) were prepared using spherical molds made of thin aluminum, which are low-cost, off-the-shelf solutions. The charges were bare, meaning they lacked any casing, as the molds were designed to be easily removed after casting. The resulting charges were safer due to their smaller dimensions and the absence of hazardous metallic debris. Composition B charges demonstrated promising results, with their performance characterized through blast and thermochemical experiments. Comprehensive data are provided for Composition B charges, including TNT equivalence, pressures, velocity of detonation, DSC/TGA curves at four different heating rates, activation energy, peak decomposition temperatures, X-ray analysis, and statistics on masses and densities. A comparison between detonation and deflagration processes, captured in high-speed footage, is also presented. This explosive characterization is crucial for structural teams to precisely understand the blast loads produced, ensuring a clear and accurate knowledge of the forces acting on structures. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Figure 1

21 pages, 8531 KiB  
Article
Recursive Time Series Prediction Modeling of Long-Term Trends in Surface Settlement During Railway Tunnel Construction
by Feilian Zhang, Qicheng Wei, Zhe Wu, Jiawei Cao, Danlin Jian and Lantian Xiang
CivilEng 2025, 6(2), 19; https://doi.org/10.3390/civileng6020019 - 3 Apr 2025
Viewed by 252
Abstract
The surface settlement of railroad tunnels is dynamically updated as the construction progresses, exhibiting complex nonlinear characteristics. The accuracy of the on-site nonlinear regression fitting prediction method needs to be improved. To prevent surface settlement and surrounding rock collapse during railroad tunnel construction, [...] Read more.
The surface settlement of railroad tunnels is dynamically updated as the construction progresses, exhibiting complex nonlinear characteristics. The accuracy of the on-site nonlinear regression fitting prediction method needs to be improved. To prevent surface settlement and surrounding rock collapse during railroad tunnel construction, while also ensuring the safety of the tunnel and existing structures, we propose a recursive prediction model for the long-term trend of surface settlement utilizing a singular spectrum analysis (SSA), improved sand cat swarm optimization (ISCSO), and a kernel extreme learning machine (KELM). First, SSA decomposition, known for its adaptive decomposition of one-dimensional nonlinear time series, reorganizes the early surface settlement data. The dynamic sliding window method is introduced to construct the prediction dataset, which is then trained using the KELM. ISCSO is used to optimize the key parameters of the KELM to obtain the long-term trend curves of surface settlement through recursive time series prediction. The superiority and effectiveness of ISCSO and the model are verified through numerical experiments and simulation experiments based on engineering cases, providing a reference for the early warning and control of surface settlement during the construction of similar tunnels. Full article
Show Figures

Figure 1

22 pages, 14931 KiB  
Article
Inspection of PC Pre-Tensioned Girders Deteriorated by Actual Salt Damage via the Triaxial Magnetic Method
by Hisashi Kakinohana, Yuko Tanabe, Yoshiaki Tamaki and Tetsuhiro Shimozato
CivilEng 2025, 6(2), 18; https://doi.org/10.3390/civileng6020018 - 1 Apr 2025
Viewed by 254
Abstract
PC steel material inside pre-stressed concrete bridges is prone to corrosion due to the effect of salt, which leads to cross-sectional losses and fractures if proper maintenance is not carried out, affecting the girders’ structural performance. In Japan, pre-tensioned girders incorporating small-diameter PC [...] Read more.
PC steel material inside pre-stressed concrete bridges is prone to corrosion due to the effect of salt, which leads to cross-sectional losses and fractures if proper maintenance is not carried out, affecting the girders’ structural performance. In Japan, pre-tensioned girders incorporating small-diameter PC steel material with a span length of 13 m or less were used until the early 1980s. Thus, it is essential to understand the fracture conditions of PC steel material and the factors affecting section loss due to corrosion, in order to properly assess the residual strength of salt-affected pre-tensioned girders. Hence, the current research clarifies the accuracy of techniques used for detecting deterioration in a pre-tensioned PC girder that had been out of service for about 40 years, caused by exposure to the severely saline environment of the Okinawa coast. Visual and hammer-tapping investigation of the actual bridge in addition to fracture investigation of the PC steel material using the triaxial magnetic method and destructive investigation of the concrete cover on the bottom of the girder were carried out and correlated. The final results confirmed that the triaxial magnetic method could detect PC steel material fractures accurately, and valuable information was obtained regarding fracture-detection technology for application in PC girders via non-destructive testing. Full article
Show Figures

Figure 1

31 pages, 993 KiB  
Review
A Review on the Use of Plastic Waste as a Modifier of Asphalt Mixtures for Road Constructions
by Amira Ben Ameur, Jan Valentin and Nicola Baldo
CivilEng 2025, 6(2), 17; https://doi.org/10.3390/civileng6020017 - 1 Apr 2025
Viewed by 1001
Abstract
Rising industrialization and population growth contribute to the increasing generation of plastic waste, which poses significant environmental and health challenges. Despite its potential as a resource, plastic waste is often discarded without proper treatment. Repurposing it in road construction offers both economic and [...] Read more.
Rising industrialization and population growth contribute to the increasing generation of plastic waste, which poses significant environmental and health challenges. Despite its potential as a resource, plastic waste is often discarded without proper treatment. Repurposing it in road construction offers both economic and environmental benefits, providing a sustainable waste management solution. This paper thoroughly examines various types of plastic waste used in asphalt mixtures, considering both wet and dry processing methods and their impact on bituminous binders and asphalt performance. Overall, incorporating waste plastics into asphalt mixtures has been shown to improve fatigue resistance, rutting resistance, moisture resistance, and high-temperature performance. However, challenges related to compatibility and low-temperature performance persist in plastic-modified asphalt applications. To address these issues, modified approaches, such as the use of chemical additives, have been identified as effective in enhancing the bonding between waste plastics and bituminous binders while also increasing the amount of plastic that can be incorporated. While plastic-modified asphalt shows significant promise, overcoming these challenges through targeted research and careful implementation is essential for its sustainable and effective use in asphalt mixtures, ensuring long-term performance. Full article
(This article belongs to the Collection Recent Advances and Development in Civil Engineering)
Show Figures

Figure 1

21 pages, 3784 KiB  
Review
The Development of Continuous Connections for Multi-Span Precast Prestressed Girder Bridges: A Review
by Narek Galustanian, Mohamed T. Elshazli, Harpreet Kaur, Alaa Elsisi and Sarah Orton
CivilEng 2025, 6(2), 16; https://doi.org/10.3390/civileng6020016 - 26 Mar 2025
Viewed by 631
Abstract
The construction of highway bridges using continuous precast prestressed concrete girders provides an economical solution by minimizing formwork requirements and accelerating construction. Different ways can be used to integrate bridge continuity and enable the development of negative bending moments at piers. Continuous bridge [...] Read more.
The construction of highway bridges using continuous precast prestressed concrete girders provides an economical solution by minimizing formwork requirements and accelerating construction. Different ways can be used to integrate bridge continuity and enable the development of negative bending moments at piers. Continuous bridge connections enhance structural integrity by reducing deflections and distributing loads more efficiently. Research has led to the development of various continuity details, categorized into partial and full integration, to improve performance under diverse loading conditions. This review summarizes studies on both partial and fully integrated continuous bridges, highlighting improvements in connection resilience and the incorporation of advanced construction technologies. While extended deck reinforcement presents an economical solution for partial continuity, it has limitations, especially in longer spans. However, full integration provides additional benefits, such as further reduced deflections and bending moments, contributing to improved overall structural performance. Positive-moment connections using bent bars have shown enhanced performance in achieving continuity, though skewed bridge configurations may reduce the effectiveness of continuity. Ultra-High-Performance Concrete (UHPC) has been identified as a superior material for joint connections, providing greater load capacity, durability, and seismic resistance. Additionally, mechanical splices, such as threaded rod systems, have proven effective in achieving continuity across various load types. The seismic performance of precast prestressed concrete girders relies on robust joint connections, particularly at column–foundation and column–cap points, where reinforcements such as steel plates, fiber-reinforced shells, and unbonded post-tensioning are important for shear and compression transfer. Full article
(This article belongs to the Collection Recent Advances and Development in Civil Engineering)
Show Figures

Figure 1

Previous Issue
Back to TopTop